Skip to main content
Log in

Retrieval of Total Column Carbon Dioxide over Russia from Meteor-M No. 2 Satellite Data

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

A description is given of the method for the retrieval of atmospheric column-averaged dry-air mole fractions of carbon dioxide (XCO2) from the data of IKFS-2 infrared Fourier spectrometer on board the Meteor-M Russian meteorological satellites. The method is based on estimating XCO2 using a second-order regression, whose predictors are the effective spectral optical depths of the atmosphere in the infrared region of 8–14 \(\mu\)m. The optical depth is determined using spectral intensities of outgoing radiation measured by the IKFS-2 as well as the calculated intensities of the Earth’s surface or cloud top simulated as a gray body with temperature \(T_\mathrm{s}\). The temperature \(T_\mathrm{s}\) is retrieved from IKFS-2 measurements within the atmospheric microwindow at the wave number equal to 900.1 cm\(^{-1}\). The reference XCO2 values for constructing the regression were the results of contact CO2 measurements on the tall tower at the ZOTTO international observatory (Central Siberia) and at the NOAA observatory on the Mauna Loa volcano (Hawaii) in 2015–2016. The methodology was validated by comparing the XCO2 retrieved from Meteor-M No. 2 IKFS-2 measurements with parallel measurements over Siberia by the OCO and CrIS satellite spectrometers on board the OCO-2 and NOAA-20 satellites (USA). The maximum discrepancies in the daily estimates of the spatially averaged XCO2 during October 9–19, 2021 derived from the IKFS-2 data do not exceed 2.3 ppm versus the OCO data and 5 ppm versus the CrIS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inoue, Sh. Maksyutov, T. Machida, and A. V. Fofonov, "Vertical Distribution of Greenhouse Gases over West Siberia from Long-term Measurement Data," Optika Atmos. Okeana, No. 5, 22 (2009) [in Russian].

    Article  Google Scholar 

  2. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksutov, M. Sasakawa, and K. Shimoyama, "The Dynamics in Vertical Distribution of Greenhouse Gases in the Atmosphere," Optika Atmos. Okeana, No. 12, 25 (2012) [in Russian].

    Google Scholar 

  3. Ya. A. Virolainen, A. A. Nikitenko, and Yu. M. Timofeev, "Intercalibration of Satellite and Ground-based Measurements of CO2 Mean Mole Fractions at NDACC St. Petersburg Station," Zhurnal Prikladnoi Spektroskopii, No. 5, 87 (2020) [in Russian].

  4. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, A. B. Uspensky, F. S. Zavelevich, Yu. M. Golovin, D. A. Kozlov, A. N. Rublev, and A. V. Kukharsky, "IKFS-2 Satellite Atmospheric Sounder. 1. Analysis of Outgoing Radiation Spectra Measurements," Issledovanie Zemli iz Kosmosa, No. 5 (2016) [in Russian].

  5. A. N. Rublev, V. V. Golomolzin, A. B. Uspensky, A. V. Panov, and A. S. Prokushkin, "CO2 Retrieval from Meteor-M No. 2 Satellite Measurements," in Theses of International Symposium "Atmospheric Radiation and Dynamics" (St. Petersburg, 2017).

  6. G. A. F. Seber, Linear Regression Analysis (Mir, Moscow, 1980) [Transl. from English].

    Google Scholar 

  7. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Basis of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  8. A. V. Timokhina, A. S. Prokushkin, and A. V. Panov, "Diurnal and Seasonal Dynamics of CO2 and CH4 in the Atmospheric over Ecosystems in Western Siberia (Yenisei Region)," Vestnik KrasGAU, No. 12 (2014) [in Russian].

  9. A. B. Uspensky, "Satellite Measurements of Greenhouse Gas Distribution in the Atmosphere," Fundamental’naya i Prikladnaya Klimatologiya (2022) [in press].

  10. A. B. Uspensky, A. V. Kukharsky, S. V. Romanov, and A. N. Rublev, "Monitoring of CO2 and Total CH4 in the Troposphere over Siberia Based on AIRS and IASI Satellite IR Sounder Data," Issledovanie Zemli iz Kosmosa, No. 1 (2011) [in Russian].

  11. A. Khokhlov and Yu. Mel’nikov, Coal Generation: New Challenges and Opportunities (SKOLKOVO School of Management Energy Center, 2019) [in Russian].

    Google Scholar 

  12. A. Belward and T. Loveland, The DIS 1km Land Cover Data Set, 1996, GLOBAL CHANGE, The IGBP Newsletter, No. 27 (1996), http://www.surf.larc.nasa.gov/surf/pages/explan.html.

  13. Carbon Dioxide Peaks near 420 Parts per Million at Mauna Loa Observatory, https://research.noaa.gov/article/ArtMID/587/ArticleID/2764/Coronavirus-response-barely-slows-rising-carbon-dioxide.

  14. CEOS White Paper. A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space, Version 1.2 (CEOS, November 11, 2018).

  15. E. J. Dlugokencky, J. W. Mund, A. M. Crotwell, M. J. Crotwell, and K. W. Thoning, Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968–2020, Version: 2021-07-30 (2021).

  16. Yu. M. Golovin, F. S. Zavelevich, A. G. Nikulin, D. A. Kozlov, D. O. Monakhov, I. A. Kozlov, S. A. Arkhipov, V. A. Tselikov, and A. S. Romanovskii, "Spaceborne Infrared Fourier Transform Spectrometers for Temperature and Humidity Sounding of the Earth’s Atmosphere," Izv. Atmos. Ocean. Phys., No. 9, 50 (2014).

    Article  Google Scholar 

  17. Ground-based Network Capacity Analysis for CO2M Cal/Val, EUM/COPER-CO2M/DOC/21/1215886, v2, 19 February 2021.

  18. M. Heimann, E. D. Schulze, J. Winderlich, M. O. Andreae, X. Chi, C. Gerbig, O. Kolle, K. Kubler, J. V. Lavric, E. Mikhailov, A. Panov, S.-B. Park, C. Rodenbeck, and A. Skorochod, "The Zotino Tall Tower Observatory (Zotto): Quantifying Large Scale Biogeochemical Changes in Central Siberia," Nova Acta Leopoldina, 117 (2014).

    Google Scholar 

  19. IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Cambridge Univ. Press) [in press].

  20. A. A. Kozlov, D. A. Kozlov, F. S. Zavelevich, Yu. V. Kiseleva, I. A. Kozlov, A. V. Kukharskii, A. N. Rublev, A. B. Uspensky, and I. S. Cherkashin, "IRFS-2 Onboard Radiometric Calibration Errors Evaluation by Comparison with SEVIRI/Meteosat-10 Data," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 6, 13 (2016).

    Article  Google Scholar 

  21. S. Lafont, L. Kergoat, G. Dedieu, A. Chrvillard, U. Kastens, and O. Kolle, "Spatial and Temporal Variability of Land CO2 Fluxes Estimated with Remote Sensing and Analysis Data over Western Eurasia," Tellus B, No. 5, 54 (2002).

    Article  Google Scholar 

  22. J. Laughner, G. Toon, D. Wunch, C. Roehl, S. Roche, and P. Wennberg, "Summary of Advancements in the GGG2020 TCCON Retrieval," in 17th International Workshop on Greenhouse Gas Measurements from Space, June 14–17, 2021, https://cce-datasharing.gsfc.nasa.gov/files/conference_presentations/Talk_Laughner_49_25.pdf.

  23. M. Matricardi, The Generation of RTTOV Regression Coefficients for IASI and AIRS Using a New Profile Training Set and a New Line-by-line Database, Technical Memorandum, Vol. 564 (ECMWF, 2008).

    Google Scholar 

  24. S. Noe, H. Bovensmann, J. P. Burrows, J. Frerick, K. van Chance, A. P. H. Goede, and C. Muller, "SCIAMACHY Instrument on Envisat-1," in Proc. SPIE 3498, Sensors, Systems, and Next-Generation Satellites II, December 21, 1998.

  25. C. W. O’Dell, A. Eldering, P. Wennberg, D. Crisp, M. Gunson, B. Fisher, C. Frankenberg, M. Kiel, H. Lindqvist, L. Mandrake, A. Merrelli, V. Natraj, R. Nelson, G. Osterman, V. Payne, T. Taylor, D. Wunch, B. Drouin, F. Oyafuso, A. Chang, J. McDuffie, M. Smyth, D. Baker, S. Basu, F. Chevallier, S. Crowell, L. Feng, P. Palmer, M. Dubey, O. Garcia, D. Griffith, F. Hase, L. Iraci, R. Kivi, I. Morino, J. Notholt, H. Ohyama, C. Petri, C. Roehl, M. Sha, K. Strong, R. Sussmann, Y. Te, O. Uchino, and V. Velazco, "Improved Retrievals of Carbon Dioxide from Orbiting Carbon Observatory-2 with the Version 8 ACOS Algorithm," Atmos. Measur. Tech., 11 (2018).

    Article  Google Scholar 

  26. B. Pinty, P. Ciais, D. Dee, A. Dolman, M. Dowell, R. Engelen, K. Holmlund, G. Janssens-Maenhout, Y. Meijer, P. Palmer, M. Scholze, H. D. van der Gon, M. Heimann, O. Juvyns, A. Kentarchos, and H. Zunker, "CO2: An Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity," in EUR 29817 EN (Publications Office of the European Union, Luxembourg, 2019) (online).

  27. S. Roche, K. Strong, D. Wunch, J. Mendonca, C. Sweeney, B. Baier, S. C. Biraud, J. L. Laughner, G. C. Toon, and B. J. Connor, "Retrieval of Atmospheric CO2 Vertical Profiles from Ground-based Near-infrared Spectra," Atmos. Measur. Tech., 14 (2021).

    Article  Google Scholar 

  28. A. Rublev, A. Uspensky, C. Camy-Peyret, and T. Udalova, "Regional Estimates of CO2 Mixing Ratio from SCIAMACHY Data: Methodology, Retrieval and Validation," in Proceedings Meteorological Satellite Conference (Cordoba, 2010).

  29. W. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, "Classification-based Emissivity for Land Surface Temperature Measurement from Space," Int. J. Remote Sens., No. 14, 19 (1998).

    Article  Google Scholar 

  30. The NOAA Unique CrIS/ATMS Processing System (NUCAPS): Algorithm Theoretical Basis Documentation, Vers. 1.0, August 21, 2013.

  31. Y. M. Timofeyev, A. B. Uspensky, F. S. Zavelevich, A. V. Polyakov, Y. A. Virolaynen, A. N. Rublev, A. V. Kukharsky, J. V. Kiseleva, D. A. Kozlov, I. A. Kozlov, A. G. Nikulin, V. P. Pyatkin, and E. V. Rusin, "Hyperspectral Infrared Atmospheric Sounder IKFS-2 on "Meteor-M" No. 2—Four Years in Orbit," J. Quant. Spectrosc. and Radiative Transfer, 238 (2019).

    Article  Google Scholar 

  32. A. P. Trishchenko, K. V. Khlopenkov, Y. Luo, and P. Bernath, "Probability of Pixel Contamination by Cloud and Cloud Shadows for Spaceborne Sensors with Large Footprint Size," in Presentation at Joint ENVISAT/AURA/ACE Science Team Meeting, November 8–10, 2005, The Hague, Netherlands.

  33. D. Wunch, G. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, "The Total Carbon Column Observing Network (TCCON)," Phil. Trans. Roy. Soc. A, 369 (2011).

    Article  Google Scholar 

  34. F. Zavelevich, D. Kozlov, I. Kozlov, I. Cherkashin, A. Uspensky, Yu. Kiseleva, V. Golomolzin, and A. Filei, "IKFS-2 Radiometric Calibration Stability in Different Spectral Bands," GSICS Quarterly: Winter Issue 2018, No. 1, 12 (2018).

  35. X. Zhang, Y. Zhang, L. Bai, J. Tao, L. Chen, M. Zou, Z. Han, and Z. Wang, "Retrieval of Carbon Dioxide Using Cross-track Infrared Sounder (CrIS) on S-NPP," Remote Sens., 13 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Golomolzin.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 4, pp. 79-95. https://doi.org/10.52002/0130-2906-2022-4-79-95.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golomolzin, V.V., Rublev, A.N., Kiseleva, Y.V. et al. Retrieval of Total Column Carbon Dioxide over Russia from Meteor-M No. 2 Satellite Data. Russ. Meteorol. Hydrol. 47, 304–314 (2022). https://doi.org/10.3103/S1068373922040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922040069

Keywords

Navigation