Skip to main content
Log in

A simple butterfly-shaped chaotic system

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we proposed a multi-wing chaotic system based on the Sprott-B system with the nonlinear feedback method. The novel system can simultaneously generate attractors with one-wing, butterfly-shaped double-wing, and butterfly-shaped four-wing. Comparatively, the novel system is simple, which includes two quadratically nonlinear terms. In the novel system, the period-doubling bifurcation process was observed with the bifurcation diagram, and the period and chaos were confirmed with power spectra. Especially, the novel system was asymmetric about any axis and can generate asymmetric coexisting attractors. The chaotic sequences generated by the novel system had good pseudo-randomness which was confirmed by the NIST test. In addition, the feasibility of the novel system was confirmed by the hardware circuit. The novel system would be able to be widely applied in the field of secure communication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request. This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. A. Dmitriev, V. Kornilov, S. Maltseva, Complexity (2018). https://doi.org/10.1155/2018/4732491

    Article  Google Scholar 

  2. J. Suykens, J. Vandewalle, IEEE Trans. Circ. Syst. I 40, 861 (1993)

    Google Scholar 

  3. Z.W. Peng, W.X. Yu, J.N. Wang, Z.B. Zhou, J. Chen, G.L. Zhong, Arab. J. Sci. Eng. 47, 813 (2022)

    Google Scholar 

  4. E.E. Sham, D.P. Vidyarthi, Digit. Signal Prog. 126, 18 (2022)

    Google Scholar 

  5. A.A.H. Shoreh, N.V. Kuznetsov, T.N. Mokaev, Physica A-Stat. Mech. Appl. 586, 16 (2022)

    Google Scholar 

  6. F. Yu, Q. Wan, J. Jin, L. Li, Q. Tang, IEEE Access 7, 1 (2019)

    Google Scholar 

  7. S.T. Kingni, K. Rajagopal, S. Cicek, A. Cheukem, V.K. Tamba, G.F. Kuiate, Eur. Phys. J. B 93, 1 (2020)

    Google Scholar 

  8. J.C. Wu, Z. Song, Y.F. Xie, X.Y. Zhou, P. Zhou, P.H. Mu, N.A.Q. Li, Acta Physica Sinica 70, 8 (2021)

    Google Scholar 

  9. S.C. Wang, C.H. Wang, C. Xu, Opt. Lasers Eng. 128, 105995 (2020)

    Google Scholar 

  10. J. Zeng, C.H. Wang, Secur. Commun. Netw. 2021, 1 (2021)

    Google Scholar 

  11. F. Yu, X.X. Kong, H.F. Chen, Q.L. Yu, S. Cai, Y.Y. Huang, S.C. Du, Front. Phys. 10, 14 (2022)

    Google Scholar 

  12. F. Yu, Z.N. Zhang, H. Shen, Y.Y. Huang, S. Cai, S.C. Du, Chin. Phys. B 31, 10 (2022)

    Google Scholar 

  13. L. Zhou, C.H. Wang, L.L. Zhou, Nonlinear Dyn. 85, 2653 (2016)

    Google Scholar 

  14. L. Zhou, C.H. Wang, L.L. Zhou, Int. J. Bifurc. Chaos 27, 1750027 (2017)

    Google Scholar 

  15. L. Zhou, C.H. Wang, L.L. Zhou, Int. J. Circuit Theory Appl. 46, 84 (2018)

    Google Scholar 

  16. L. Huang, Z. Zhang, J. Xiang, S. Wang, Complexity 2019, 1 (2019)

    Google Scholar 

  17. Q. Deng, C. Wang, L. Yang, Int. J. Bifurc. Chaos 30, 2050086 (2020)

    Google Scholar 

  18. F. Yu, H. Shen, Z.N. Zhang, Y.Y. Huang, S. Cai, S.C. Du, Integr.- Vlsi J. 81, 71 (2021)

    Google Scholar 

  19. F. Yu, H.F. Chen, X.X. Kong, Q.L. Yu, S. Cai, Y.Y. Huang, S.C. Du, Eur. Phys. J. Plus 137, 14 (2022)

    Google Scholar 

  20. S. Sahoo, B.K. Roy, Chaos Solitons Fract. 157, 7 (2022)

    Google Scholar 

  21. J.C. Sprott, Phys. Rev. E 50, 647 (1994)

    ADS  MathSciNet  Google Scholar 

  22. Q. Yang, D. Zhu, L. Yang, Int. J. Bifurc. Chaos 28, 1850057 (2018)

    Google Scholar 

  23. J.M. Liu, Optik – Int. J. Light Electron Opt. 125, 7089 (2014)

    Google Scholar 

  24. M.J. Wang, Y. Deng, X.H. Liao, Z.J. Li, M.L. Ma, Y.C. Zeng, Int. J. Non-Linear Mech. 111, 149 (2019)

    ADS  Google Scholar 

  25. F. Yu, S. Qian, X. Chen, Y. Huang, L. Liu, C. Shi, S. Cai, Y. Song, C. Wang, Int. J. Bifurc. Chaos 30, 2050147 (2020)

    Google Scholar 

  26. J.L. Kaplan, J.A. Yorke, Lect. Notes Math. 170, 204 (1979)

    Google Scholar 

  27. X. Wang, X. Min, J. Yu, Y. Shen, G. Wang, H. Ho, Int. J. Bifurc. Chaos 29, 1930004 (2019)

    Google Scholar 

  28. M.C. Valsakumar, S. Satyanarayana, V. Sridhar, Pramana 48, 69 (1997)

    ADS  Google Scholar 

  29. X. Wang, X. Min, P. Zhou, D. Yu, Complexity 2020, 2620375 (2020)

    Google Scholar 

  30. G. Hu, K.J. Wang, L.L. Liu, Sensors 21, 13 (2021)

    Google Scholar 

  31. S.B. He, K.H. Sun, C.X. Zhu, Chin. Phys. B 22, 6 (2013)

    Google Scholar 

  32. L. Cui, M. Lu, Q.L. Ou, H. Duan, W.H. Luo, Chaos Solitons Fract. 138, 12 (2020)

    Google Scholar 

  33. C.G. Ma, J. Mou, L. Xiong, S. Banerjee, T.M. Liu, X.T. Han, Nonlinear Dyn. 103, 2867 (2021)

    Google Scholar 

  34. S. Zhang, Y.C. Zeng, Z.J. Li, C.Y. Zhou, Int. J. Bifurc. Chaos 28, 18 (2018)

    Google Scholar 

  35. L.C. Liu, C.H. Du, X.F. Zhang, J. Li, S.S. Shi, Entropy 21, 21 (2019)

    ADS  Google Scholar 

  36. F. Yu, Z.A. Zhang, L. Liu, H. Shen, Y.Y. Huang, C.Q. Shi, S. Cai, Y. Song, S.C. Du, Q. Xu, Complexity 2020, 16 (2020)

    Google Scholar 

  37. Z.F. Zhang, L.L. Huang, Nonlinear Dyn. 108, 637 (2022)

    Google Scholar 

  38. S.B. He, K.H. Sun, S. Banerjee, Eur. Phys. J. Plus 131, 12 (2016)

    Google Scholar 

  39. Q. Tan, Y. Zeng, Z. Li, Nonlinear Dyn. 94, 1585 (2018)

    Google Scholar 

  40. H. Lin, C. Wang, Y. Sun, W. Yao, Nonlinear Dyn. 100, 3667 (2020)

    Google Scholar 

  41. S. Zhang, Y. Zeng, Chaos Solitons Fract. 120, 25 (2019)

    ADS  Google Scholar 

  42. L.H. Gong, R. Wu, N.R. Zhou, Int. J. Bifurc. Chaos 30, 14 (2020)

    Google Scholar 

  43. Y.M. Hu, B.C. Lai, Mod. Phys. Lett. B 35, 2150035 (2020)

    ADS  Google Scholar 

  44. C. Li, J.C. Sprott, Phys. Lett. A 382, 581 (2018)

    ADS  MathSciNet  Google Scholar 

  45. J. Kengne, G.D. Leutcho, A. Telem, Analog Integrat. Circ. Signal Process. 101, 379 (2018)

    Google Scholar 

  46. H. Bao, W. Liu, J. Ma, H. Wu, Chaos, Int. J. Bifurc. 30, 2030029 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

It is declared that all the authors contributed equally for this article.

Corresponding authors

Correspondence to Zhijun Chai or Yunxia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Kong, D., Chai, Z. et al. A simple butterfly-shaped chaotic system. Eur. Phys. J. B 95, 115 (2022). https://doi.org/10.1140/epjb/s10051-022-00376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00376-z

Navigation