Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature epitaxial welding of 3D and 2D perovskites

Abstract

Formation of epitaxial heterostructures via post-growth self-assembly is important in the design and preparation of functional hybrid systems combining unique properties of the constituents. This is particularly attractive for the construction of metal halide perovskite heterostructures, since their conventional solution synthesis usually leads to non-uniformity in composition, crystal phase and dimensionality. Herein, we demonstrate that a series of two-dimensional and three-dimensional perovskites of different composition and crystal phase can form epitaxial heterostructures through a ligand-assisted welding process at room temperature. Using the CsPbBr3/PEA2PbBr4 heterostructure as a demonstration, in addition to the effective charge and energy transfer across the epitaxial interface, localized lattice strain was observed at the interface, which was extended to the top layer of the two-dimensional perovskite, leading to multiple new sub-bandgap emissions at low temperature. Given the versatility of our strategy, unlimited hybrid systems are anticipated, yielding composition-, interface- and/or orientation-dependent properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CsPbBr3/PEA2PbBr4 heterostructures via oriented and random assembly.
Fig. 2: Interfacial microstructures of CsPbBr3/PEA2PbBr4 heterostructures.
Fig. 3: Schematics of structural models of selected perovskites.
Fig. 4: Characterizations of different types of 3D/2D perovskite heterostructures.
Fig. 5: Optical properties of CsPbBr3/PEA2PbBr4 heterostructures.
Fig. 6: Strain analysis of CsPbBr3/PEA2PbBr4 heterointerfaces.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Source data are provided with this paper. Additional data related to this paper may be requested from the authors.

References

  1. Fu, Y. P. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    Article  CAS  Google Scholar 

  2. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article  CAS  Google Scholar 

  3. Fu, Y. et al. Cation engineering in two-dimensional Ruddlesden–Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142, 4008–4021 (2020).

    Article  CAS  Google Scholar 

  4. Du, J. S. et al. Halide perovskite nanocrystal arrays: multiplexed synthesis and size-dependent emission. Sci. Adv. 6, eabc4959 (2020).

    Article  CAS  Google Scholar 

  5. Shi, E. Z. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article  CAS  Google Scholar 

  6. Shi, E. Z. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article  CAS  Google Scholar 

  7. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  CAS  Google Scholar 

  8. Wang, H. P. et al. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33, 2003309 (2021).

    Article  CAS  Google Scholar 

  9. Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11, 3378 (2020).

    Article  Google Scholar 

  10. Li, Y. et al. Highly stable perovskite photodetector based on vapor-processed micrometer-scale CsPbBr3 microplatelets. Chem. Mater. 30, 6744–6755 (2018).

    Article  CAS  Google Scholar 

  11. Zhang, X. et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 433–437 (2017).

    Article  Google Scholar 

  12. Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    Article  CAS  Google Scholar 

  13. Van Driessche, A. E. S. et al. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 556, 89–94 (2018).

    Article  Google Scholar 

  14. Tong, Y. et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56, 13887–13892 (2017).

    Article  CAS  Google Scholar 

  15. Sun, J.-K. et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J. Am. Chem. Soc. 140, 11705–11715 (2018).

    Article  CAS  Google Scholar 

  16. Crane, M. J., Pandres, E. P., Davis, E. J., Holmberg, V. C. & Pauzauskie, P. J. Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nat. Commun. 10, 4942 (2019).

    Article  Google Scholar 

  17. Portehault, D., Cassaignon, S., Baudrin, E. & Jolivet, J.-P. Selective heterogeneous oriented attachment of manganese oxide nanorods in water: toward 3D nanoarchitectures. J. Mater. Chem. 19, 7947–7954 (2009).

    Article  CAS  Google Scholar 

  18. Cottingham, P. & Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Comm. 52, 5246–5249 (2016).

    Article  CAS  Google Scholar 

  19. Li, G., Huang, J., Li, Y., Tang, J. & Jiang, Y. Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 12, 109–114 (2019).

    Article  Google Scholar 

  20. Li, G. et al. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30, 6099–6107 (2018).

    Article  CAS  Google Scholar 

  21. Boziki, A., Dar, M. I., Jacopin, G., Gratzel, M. & Rothlisberger, U. Molecular origin of the asymmetric photoluminescence spectra of CsPbBr3 at low temperature. J. Phys. Chem. Lett. 12, 2699–2704 (2021).

    Article  CAS  Google Scholar 

  22. Israelachvili, J. N. & Tabor, D. The calculation of van der Waals dispersion forces between macroscopic bodies. Proc. R. Soc. Lond. A 331, 39–55 (1972).

    Article  CAS  Google Scholar 

  23. Yasui, K. & Kato, K. Oriented attachment of cubic or spherical BaTiO3 nanocrystals by van der Waals torque. J. Phys. Chem. C 119, 24597–24605 (2015).

    Article  CAS  Google Scholar 

  24. Yoshimura, H., Yamauchi, M. & Masuo, S. In situ observation of emission behavior during anion-exchange reaction of a cesium lead halide perovskite nanocrystal at the single-nanocrystal level. J. Phys. Chem. Lett. 11, 530–535 (2020).

    Article  CAS  Google Scholar 

  25. Guhrenz, C. et al. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 28, 9033–9040 (2016).

    Article  CAS  Google Scholar 

  26. Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

    Article  CAS  Google Scholar 

  27. Ravi, V. K., Markad, G. B. & Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 1, 665–671 (2016).

    Article  CAS  Google Scholar 

  28. Wang, S. et al. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron–phonon interaction. J. Phys. Chem. Lett. 10, 2546–2553 (2019).

    Article  CAS  Google Scholar 

  29. Long, H. et al. Exciton–phonon interaction in quasi-two dimensional layered (PEA)2(CsPbBr3)n–1PbBr4 perovskite. Nanoscale 11, 21867–21871 (2019).

    Article  CAS  Google Scholar 

  30. Baltog, I., Lefrant, S., Dimofte, C. & Mihut, L. Phonon assisted excitonic luminescence in CsPbCl3. Radiat. Eff. Defects Solids 135, 285–287 (1995).

    Article  CAS  Google Scholar 

  31. Chakraborty, R. & Nag, A. Correlation of dielectric confinement and excitonic binding energy in 2D layered hybrid perovskites using temperature dependent photoluminescence. J. Phys. Chem. C 124, 16177–16185 (2020).

    Article  CAS  Google Scholar 

  32. Ni, L. M. et al. Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11, 10834–10843 (2017).

    Article  CAS  Google Scholar 

  33. Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  CAS  Google Scholar 

  34. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  CAS  Google Scholar 

  35. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article  CAS  Google Scholar 

  36. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  CAS  Google Scholar 

  37. Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    Article  CAS  Google Scholar 

  38. Zhu, G. et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590, 416–422 (2021).

    Article  CAS  Google Scholar 

  39. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  40. Cao, Y. et al. Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019).

    Article  Google Scholar 

  41. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  45. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  46. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  47. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    Article  CAS  Google Scholar 

  48. Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  49. White, J. A. & Bird, D. M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B 50, 4954–4957 (1994).

    Article  CAS  Google Scholar 

  50. Bunte, S. W. & Sun, H. Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B 104, 2477–2489 (2000).

    Article  CAS  Google Scholar 

  51. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.W. thanks the National Key Basic Research Program of China for support (grant no. 2020YFA0308900). X.H. thanks the National Key Basic Research Program of China (grant no. 2021YFB3200302) and the National Natural Science Foundation of China (grant no. 51832001). L.W. also thanks the National Natural Science Foundation of China (grant no. 92064010), the Fundamental Research Funds for the Central Universities of China, and the funding for ‘Distinguished Professors’ and ‘High-Level Talents in Six Industries’ of Jiangsu Province (grant no. XYDXX-021). X.H. and L.W. acknowledge the Development Program of Shaanxi Province (grant nos 2020GXLH-Z-020, 2020GXLH-Z-026 and 2020GXLH-Z-027). C.Z. thanks the National Natural Science Foundation of China (grant no. 11504046). Z.L. thanks the National Research Foundation Singapore programme (NRF-CRP22-2019-0007) and Singapore Ministry of Education via AcRF Tier 3 (MOE2018-T3-1-002) for support. H.Z. thanks the Innovation and Technology Commission (ITC) via the Hong Kong Branch of National Precious Metals Material Engineering Research Center and the Start-Up Grant at the City University of Hong Kong for support.

Author information

Authors and Affiliations

Authors

Contributions

X.H., L.W. and W.H. proposed the research direction and supervised the project. Z.Z., Lei Yang, Q.C. J.D. and S.Z. designed and synthesized the heterostructures and performed the TEM, X-ray diffraction, steady-state PL and ultraviolet spectroscopy. C.Z. and X.H. carried out and analysed the STEM of the microstructures of the heterointerfaces. W.Z., Y.C. and L.W. performed and analysed the temperature-dependent PL spectra of the heterostructure samples. Z.Z., S.Z. and J.C. carried out time-resolved PL. C.Y. and X.W. helped to analyse the time-resolved PL results. L.Z., X.H. and J.Y. provided theoretical calculations and analyses. J.B., B.C., H.G., H.C., N.W. and G.X. performed some supporting experiments. J.D., Zeyi Wang, H.L., S.L., Zhiwei Wang, Lijuan Yang, Y.Y., Z.L. and H.Z. contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Lin Wang, Xiao Huang or Wei Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Giulia Grancini, Maria Sushko and Daniel Vanmaekelbergh for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhu, C., Yang, L. et al. Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21, 1042–1049 (2022). https://doi.org/10.1038/s41563-022-01311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01311-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing