Skip to main content
Log in

CMOS Implementation and Performance Analysis of Known Approximate 4:2 Compressors

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Approximate computing is one of the emerging concepts in multimedia applications like image processing applications. In the research world, it is getting more attention from researchers. Because of sacrificing a smaller scale in the accuracy of the design, it reduces the circuit parameters like area complexity, delay, and power. The purpose of this work is to survey the Field-Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) implementation of modified Dadda multiplier architecture using various approximate 4:2 compressor designs presented for the last few decades. Based on implementation outcomes, this survey examines the approximate modified Dadda multiplier design performance for its closeness to the exact computation. In addition, the comparison is carried out based on approximate 4:2 compressors performance, an error rate of the particular design, the accuracy analysis metrics of approximate multiplier and its area utilization, power consumption, and delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahmadinejad M, Moaiyeri MH, Sabetzadeh F (2019) Energy and area efficient imprecise compressors for approximate multiplication at nanoscale. AEU-Int J Electron C 110:152859. https://doi.org/10.1016/j.aeue.2019.152859

  2. Akbari O, Kamal M, Afzali-Kusha A, Pedram M (2017) Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans Very Large Scale Integr VLSI Syst 25(4):1352–1361. https://doi.org/10.1109/TVLSI.2016.2643003

  3. Anguraj P, Krishnan T (2021) Design and implementation of modified BCD digit multiplier for digit-by-digit decimal multiplier. Analog Integr Circ Sig Process 107:1–12

    Article  Google Scholar 

  4. Ansari MS, Jiang H, Cockburn BF, Han J (2018) Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J Emerging Sel Top Circuits Syst 8(3):404–416. https://doi.org/10.1109/JETCAS.2018.2832204

    Article  Google Scholar 

  5. Arasteh A, Moaiyeri M, Taheri M, Navi K, Bagherzadeh N (2017) An energy and area efficient 4:2 compressor based on FinFETs. Integration 60. https://doi.org/10.1016/j.vlsi.2017.09.010

  6. Chang C-H, Gu J, Zhang M (2004) Ultra low-voltage low-power CMOS 4–2 and 5–2 compressors for fast arithmetic circuits. IEEE Trans Circuits Syst Regul Pap 51(10):1985–1997. https://doi.org/10.1109/TCSI.2004.835683

    Article  Google Scholar 

  7. Chang Y-J, Cheng Y-C, Lin Y-F, Liao S-C, Lai C-H, Wu T-C (2019) Imprecise 4–2 compressor design used in image processing applications. IET Circuits Devices Syst 13(6):848–856. https://doi.org/10.1049/iet-cds.2018.5403

    Article  Google Scholar 

  8. Edavoor PJ, Raveendran S, Rahulkar AD (2020) Approximate multiplier design using novel dual-stage 4:2 compressors. IEEE Access 8:48337–48351. https://doi.org/10.1109/ACCESS.2020.2978773

    Article  Google Scholar 

  9. Esposito D, Strollo AGM, Napoli E, De Caro D, Petra N (2018) Approximate multipliers based on new approximate compressors. IEEE Trans Circuits Syst Regul Pap 65(12):4169–4182. https://doi.org/10.1109/TCSI.2018.2839266

    Article  Google Scholar 

  10. Ha M, Lee S (2018) Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed Syst Lett 10(1):6–9. https://doi.org/10.1109/LES.2017.2746084

    Article  Google Scholar 

  11. Gorantla A, Deepa P (2017) Design of approximate compressors for multiplication. ACM J Emerg Technol Comput Syst 13(3):44:1–17. https://doi.org/10.1145/3007649

  12. Guo Y, Sun H, Guo L, Kimura S (2018) Low-cost approximate multiplier design using probability-driven inexact compressors. In: Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018. pp 291–294. https://doi.org/10.1109/APCCAS.2018.8605570

  13. Kong T, Li S (2021) Design and analysis of approximate 4–2 compressors for high-accuracy multipliers.  IEEE Trans Very Large Scale Integr VLSI Syst 29(10):1771–1781. https://doi.org/10.1109/TVLSI.2021.3104145

  14. Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned multiplier architecture. In: Proc. 24th Internatioal Conference on VLSI Design. pp 346–351. https://doi.org/10.1109/VLSID.2011.51

  15. Kumar UA, Chatterjee SK, Ahmed SE (2021) Low-power compressor-based approximate multipliers with error correcting module. IEEE Embed Syst Lett (Early Access ) 1–1. https://doi.org/10.1109/LES.2021.3113005

  16. Lin C-H, Lin I-C (2013) High accuracy approximate multiplier with error correction. In: Proc. IEEE 31st International Conference on Computer Design (ICCD). pp 33–38. https://doi.org/10.1109/ICCD.2013.6657022

  17. Liu W, Zhang T, McLarnon E, O’Neill M, Montuschi P, Lombardi F (2021) Design and analysis of majority logic-based approximate adders and multipliers. IEEE Trans Emerg Top Comput 9(3):1609–1624. https://doi.org/10.1109/TETC.2019.2929100

    Article  Google Scholar 

  18. Ma J, Man KL, Krilavičius T, Guan S, Jeong T (2011) Implementation of high performance multipliers based on approximate compressor design. In: Proc. 6th International Conference on Electrical and Control Technologies, ECT 2011. pp 96–100

  19. Manikantta Reddy K, Vasantha MH, Nithin Kumar YB, Dwivedi D (2019) Design and analysis of multiplier using approximate 4-2 compressor. AEU-Int J Electron C 107:89–97. https://doi.org/10.1016/j.aeue.2019.05.021

  20. Manikantta Reddy K, Vasantha MH, Nithin Kumar YB, Dwivedi D (2020) Design of approximate booth squarer for error-tolerant computing. IEEE Trans Very Large Scale Integr VLSI Syst 28(5):1230–1241.  https://doi.org/10.1109/TVLSI.2020.2976131

  21. Marimuthu R, Rezinold YE, Mallick PS (2017) Design and analysis of multiplier using approximate 15–4 compressor. IEEE Access 5:1027–1036. https://doi.org/10.1109/ACCESS.2016.2636128

    Article  Google Scholar 

  22. Moaiyeri MH, Sabetzadeh F, Angizi S (2018) An efficient majority-based compressor for approximate computing in the nano era. Micro system Technologies 24(3):1589–1601. https://doi.org/10.1007/s00542-017-3587-2

    Article  Google Scholar 

  23. Momeni A, Han J, Montuschi P, Lombardi F (2015) Design and analysis of approximate compressors for multiplication. IEEE Trans Comput 64(4):984–994. https://doi.org/10.1109/TC.2014.2308214

    Article  MathSciNet  MATH  Google Scholar 

  24. Narayanamoorthy S, Moghaddam HA, Liu Z, Park T, Kim NS (2015) Energy-efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans Very Large Scale Integr VLSI Syst 23(6):1180–1184. https://doi.org/10.1109/TVLSI.2014.2333366

  25. Park G, Kung J, Lee Y (2021) Design and analysis of approximate compressors for balanced error accumulation in MAC operator. IEEE Trans Circuits Syst Regul Pap 68(7):2950–2961. https://doi.org/10.1109/TCSI.2021.3073177

    Article  Google Scholar 

  26. Pei H, Yi X, Zhou H, He Y (2021) Design of ultra-low power consumption approximate 4–2 compressors based on the compensation characteristic. IEEE Trans Circuits Syst Express Briefs 68(1):461–465. https://doi.org/10.1109/TCSII.2020.3004929

    Article  Google Scholar 

  27. Rammohan SR, Jayashri N, Bivi MA, Nayak CK, Niveditha VR (2020) High performance hardware design of compressor adder in DA based FIR filters for hearing aids. Int J Speech Technol 23(4):807–814. https://doi.org/10.1007/s10772-020-09759-y

    Article  Google Scholar 

  28. Sabetzadeh F, Moaiyeri MH, Ahmadinejad M (2019) A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans Circuits Syst Regul Pap 66(11):4200–4208. https://doi.org/10.1109/TCSI.2019.2918241

    Article  Google Scholar 

  29. Salmanpour F, Moaiyeri MH, Sabetzadeh F (2021) Ultra-compact imprecise 4:2 compressor and multiplier circuits for approximate computing in deep nanoscale. Circuits, Systems, and Signal Processing 40(9). https://doi.org/10.1007/s00034-021-01688-8

  30. Strollo AGM, Napoli E, De Caro D, Petra N, Meo GD (2020) Comparison and extension of approximate 4–2 compressors for low-power approximate multipliers. IEEE Trans Circuits Syst Regul Pap 67(9):3021–3034. https://doi.org/10.1109/TCSI.2020.2988353

    Article  MathSciNet  MATH  Google Scholar 

  31. Taheri M, Arasteh A, Mohammadyan S, Panahi A, Navi K (2020) A novel majority based imprecise 4:2 compressor with respect to the current and future VLSI industry. Microprocessors and Microsystems 73:102962

  32. Van Toan N, Lee J-G (2020) FPGA-based multi-level approximate multipliers for high-performance error-resilient applications. IEEE Access 8:25481–25497. https://doi.org/10.1109/ACCESS.2020.2970968

    Article  Google Scholar 

  33. Veeramachaneni S, Krishna KM, Avinash L, Puppala SR, Srinivas MB (2007) Novel architectures for high-speed and low-power 3-2, 4-2 and 5-2 compressors. In: Proc. 20th International Conference on VLSI Design and 6th International Conference on Embedded Systems (VLSID’07). pp 324–329. https://doi.org/10.1109/VLSID.2007.116

  34. Venkatachalam S, Ko S-B (2017) Design of power and area efficient approximate multipliers. IEEE Trans Very Large Scale Integr VLSI Syst 25(5):1782–1786. https://doi.org/10.1109/TVLSI.2016.2643639

  35. Yang Z, Han J, Lombardi F (2015) Approximate compressors for error-resilient multiplier design. In: Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), 2015 183–186. https://doi.org/10.1109/DFT.2015.7315159

  36. Zervakis G, Tsoumanis K, Xydis S, Soudris D, Pekmestzi K (2016) Design-efficient approximate multiplication circuits through partial product perforation. IEEE Trans Very Large Scale Integr VLSI Syst 24(10):3105–3117. https://doi.org/10.1109/TVLSI.2016.2535398

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parthibaraj Anguraj or Thiruvenkadam Krishnan.

Ethics declarations

Conflicts of Interest

I certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Responsible Editor: S. T. Chakradhar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguraj, P., Krishnan, T. & Subramanian, S. CMOS Implementation and Performance Analysis of Known Approximate 4:2 Compressors. J Electron Test 38, 353–370 (2022). https://doi.org/10.1007/s10836-022-06010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-022-06010-1

Keywords

Navigation