1932

Abstract

There is a widespread view that the process of adaptation in complex systems is made difficult due to an evolutionary cost of complexity that is reflected in lower evolvability. This line of reasoning suggests that organisms must have special properties to overcome this cost, such as integration, modularity, and robustness, and that the reduction in the rate of evolution and variational constraints could help explain why organisms might not respond to selection. Here, we discuss the issues that arise from this conviction and highlight an alternative view where complexity represents an opportunity by increasing the evolutionary potential of a population. We highlight the lack of evidence supporting the influence of complexity on evolvability. Empirical data on the patterns of contemporary selection are critical for understanding this relationship.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-090809
2022-11-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-090809.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-090809&mimeType=html&fmt=ahah

Literature Cited

  1. Agarwala A, Fisher DS. 2019. Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics. Theor. Pop. Biol. 130:13–49
    [Google Scholar]
  2. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y et al. 2017. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49:1458–67
    [Google Scholar]
  3. Alfaro ME, Bolnick DI, Wainwright PC. 2004. Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. Evolution 58:495–503
    [Google Scholar]
  4. Altenberg L 2005. Modularity in evolution: some low-level questions. Modularity: Understanding the Development and Evolution of Complex Natural Systems W Callebaut, D Rasskin-Gutman 99–128 Cambridge, MA: MIT Press
    [Google Scholar]
  5. Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B 369:20130245
    [Google Scholar]
  6. Arnold SJ. 1992. Constraints on phenotypic evolution. Am. Nat. 140:S85–107
    [Google Scholar]
  7. Arnold SJ. 2014. Phenotypic evolution: the ongoing synthesis. Am. Nat. 183:729–46
    [Google Scholar]
  8. Arnold SJ, Pfrender ME, Jones AG. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112:9–32
    [Google Scholar]
  9. Berg RL. 1960. The ecological significance of correlation pleiades. Evolution 14:171–80
    [Google Scholar]
  10. Bolstad GH, Cassara JA, Márquez E, Hansen TF, Van Der Linde K et al. 2015. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. PNAS 112:13284–89
    [Google Scholar]
  11. Bolstad GH, Hansen TF, Pélabon C, Falahati-Anbaran M, Pérez-Barrales R, Armbruster WS. 2014. Genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philos. Trans. R. Soc. B 369:20130255
    [Google Scholar]
  12. Bonner JT. 1988. The Evolution of Complexity by Means of Natural Selection Princeton, NJ: Princeton Univ. Press
  13. Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P et al. 2022. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 376:1012–16
    [Google Scholar]
  14. Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–86
    [Google Scholar]
  15. Bürger R. 1986. Constraints for the evolution of functionally coupled characters: a nonlinear analysis of a phenotypic model. Evolution 40:182–93
    [Google Scholar]
  16. Calsbeek R, Gosden TP, Kuchta SR, Svensson EI 2012. Fluctuating selection and dynamic adaptive landscapes. The Adaptive Landscape in Evolutionary Biology EI Svensson, R Calsbeek 89–109 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  17. Cheverud JM. 1995. Morphological integration in the saddle-backed tamarin (Saguinus fusicollis) cranium. Am. Nat. 145:63–89
    [Google Scholar]
  18. Cheverud JM. 1996. Developmental integration and the evolution of pleiotropy. Amer. Zool. 36:44–50
    [Google Scholar]
  19. Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9:938–50
    [Google Scholar]
  20. Conrad M. 1990. The geometry of evolution. Biosystems 24:61–81
    [Google Scholar]
  21. Cowley DE, Atchley WR. 1990. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. Am. Nat. 135:242–68
    [Google Scholar]
  22. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: Murray
  23. de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15:480–90
    [Google Scholar]
  24. Draghi JA, Whitlock MC. 2012. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66:2891–902
    [Google Scholar]
  25. Emlen DJ. 2001. Costs and the diversification of exaggerated animal structures. Science 291:1534–36
    [Google Scholar]
  26. Erwin DH. 2017. The topology of evolutionary novelty and innovation in macroevolution. Philos. Trans. R. Soc. B 372:20160422
    [Google Scholar]
  27. Estes S, Arnold SJ. 2007. Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169:227–44
    [Google Scholar]
  28. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Clarendon Press
  29. Galis F. 2001. Key innovations and radiations. The Character Concept in Evolutionary Biology GP Wagner 581–605 San Diego, CA: Academic
    [Google Scholar]
  30. Gavrilets S. 1997. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12:307–12
    [Google Scholar]
  31. Gavrilets S. 2004. Fitness Landscapes and the Origin of Species Princeton, NJ: Princeton Univ. Press
  32. Gomulkiewicz R, Houle D. 2009. Joint demographic and genetic constraints on evolution. Am. Nat. 174:E218–229
    [Google Scholar]
  33. Gould SJ, Lewontin RC. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. B 205:581–98
    [Google Scholar]
  34. Hallgrímsson B, Jamniczky H, Young NM, Rolian C, Parsons TE et al. 2009. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36:355–76
    [Google Scholar]
  35. Hallgrímsson B, Willmore K, Hall BK. 2002. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119:131–58
    [Google Scholar]
  36. Hansen TF. 2003. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69:83–94
    [Google Scholar]
  37. Hansen TF. 2006. The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37:123–57
    [Google Scholar]
  38. Hansen TF 2011. Epigenetics: adaptation or contingency?. Epigenetics: Linking Genotype and Phenotype in Development and Evolution B Hallgrímsson, BK Hall 357–76 Oakland, CA: Univ. of Calif. Press
    [Google Scholar]
  39. Hansen TF, Álvarez-Castro JM, Carter AJR, Hermisson J, Wagner GP. 2006. Evolution of genetic architecture under directional selection. Evolution 60:1523–36
    [Google Scholar]
  40. Hansen TF, Armbruster WS, Carlson ML, Pélabon C. 2003. Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. J. Exp. Zool. 296B:23–39
    [Google Scholar]
  41. Hansen TF, Houle D 2004. Evolvability, stabilizing selection, and the problem of stasis. The Evolutionary Biology of Complex Phenotypes M Pigliucci, K Preston 130–50 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  42. Hansen TF, Houle D. 2008. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:1201–19
    [Google Scholar]
  43. Hansen TF, Houle D, Pavličev M, Pélabon C. 2023. Evolvability: A New and Unifying Concept in Evolutionary Biology? Cambridge, MA: MIT Press In press
  44. Hansen TF, Pélabon C. 2021. Evolvability: a quantitative-genetics perspective. Annu. Rev. Ecol. Evol. Syst. 52:153–75
    [Google Scholar]
  45. Hansen TF, Pélabon C, Armbruster WS. 2007. Comparing variational properties of homologous floral and vegetative characters in Dalechampia scandens: testing the Berg hypothesis. Evol. Biol. 34:86–98
    [Google Scholar]
  46. Hansen TF, Pélabon C, Houle D. 2011. Heritability is not evolvability. Evol. Biol. 38:258–77
    [Google Scholar]
  47. Hansen TF, Wagner GP. 2023. The evolution of evolvability. See Hansen et al. 2023
  48. Hereford J, Hansen TF, Houle D. 2004. Comparing strengths of directional selection: How strong is strong?. Evolution 58:2133–43
    [Google Scholar]
  49. Hermisson J, Hansen TF, Wagner GP. 2003. Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. Am. Nat. 161:708–34
    [Google Scholar]
  50. Hine E, McGuigan K, Blows MW. 2014. Evolutionary constraints in high-dimensional trait sets. Am. Nat. 184:119–31
    [Google Scholar]
  51. Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ et al. 2021. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. PNAS 118:e2015579118
    [Google Scholar]
  52. Houle D. 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45:630–48
    [Google Scholar]
  53. Houle D. 2001. Characters as the units of evolutionary change. The Character Concept in Evolutionary Biology GP Wagner 109–40 New York: Academic
    [Google Scholar]
  54. Houle D, Bolstad GH, Van Der Linde K, Hansen TF. 2017. Mutation predicts 40 million years of fly wing evolution. Nature 548:447–50
    [Google Scholar]
  55. Houle D, Cheng C. 2021. Predicting the evolution of sexual dimorphism of gene expression. Mol. Biol. Evol. 38:1847–59
    [Google Scholar]
  56. Houle D, Fierst J. 2013. Properties of spontaneous mutational variance and covariance for wing size and shape in Drosophila melanogaster. Evolution 67:1116–30
    [Google Scholar]
  57. Houle D, Govindaraju DR, Omholt SW. 2010. Phenomics: the next challenge. Nat. Rev. Genet. 11:855–66
    [Google Scholar]
  58. Houle D, Jones LT, Fortune R, Sztepanacz JL. 2019. Why does allometry evolve so slowly?. Integr. Comp. Biol. 59:1429–40
    [Google Scholar]
  59. Houle D, Meyer K. 2015. Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood. J. Evol. Biol. 28:1542–49
    [Google Scholar]
  60. Houle D, Morikawa B, Lynch M. 1996. Comparing mutational variabilities. Genetics 143:1467–83
    [Google Scholar]
  61. Houle D, Pélabon C. 2023. Measuring evolvability. See Hansen et al. 2023
  62. Jamniczky HA, Harper EE, Garner R, Cresko WA, Wainwright PC et al. 2014. Association between integration structure and functional evolution in the opercular four-bar apparatus of the threespine stickleback, Gasterosteus aculeatus (Pisces: Gasterosteidae). Biol. J. Linn. Soc. 111:375–90
    [Google Scholar]
  63. Johnson T, Barton N. 2005. Theoretical models of selection and mutation on quantitative traits. Philos. Trans. R. Soc. B 360:1411–25
    [Google Scholar]
  64. Jones AG, Arnold SJ, Bürger R. 2007. The mutation matrix and the evolution of evolvability. Evolution 61:727–45
    [Google Scholar]
  65. Jones AG, Bürger R, Arnold SJ. 2014. Epistasis and natural selection shape the mutational architecture of complex traits. Nat. Commun. 5:3709
    [Google Scholar]
  66. Jones KE, Angielczyk KD, Polly PD, Head JJ, Fernandez V et al. 2018a. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science 361:1249–52
    [Google Scholar]
  67. Jones KE, Benitez L, Angielczyk KD, Pierce SE. 2018b. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol. Biol. 18:172
    [Google Scholar]
  68. Kamberov YG, Wang S, Tan J, Gerbault P, Wark A et al. 2013. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152:691–702
    [Google Scholar]
  69. Kimura M. 1983. The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge Univ. Press
  70. Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. 2012. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26:1101–18
    [Google Scholar]
  71. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN et al. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157:245–61
    [Google Scholar]
  72. Kirschner M, Gerhart J. 1998. Evolvability. PNAS 95:8420–27
    [Google Scholar]
  73. Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39:115–32
    [Google Scholar]
  74. Lande R. 1979. Quantitative genetic analysis of multivariate evolution applied to brain:body size allometry. Evolution 33:402–16
    [Google Scholar]
  75. Lauder GV. 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology 7:430–42
    [Google Scholar]
  76. Lewontin RC. 1974. The Genetic Basis of Evolutionary Change New York: Columbia Univ. Press
  77. Liao IT, Rifkin JL, Cao G, Rausher MD. 2022. Modularity and selection of nectar traits in the evolution of the selfing syndrome in Ipomoea lacunosa (Convolvulaceae). New Phytol. 233:1505–19
    [Google Scholar]
  78. Lynch M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136:727–41
    [Google Scholar]
  79. Lynch M. 2005. Simple evolutionary pathways to complex proteins. Protein Sci. 14:2217–25
    [Google Scholar]
  80. Lynch M. 2007a. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8:803–13
    [Google Scholar]
  81. Lynch M. 2007b. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS 104:8597–604
    [Google Scholar]
  82. Lynch M. 2007c. The Origins of Genome Architecture Sunderland, MA: Sinauer Assoc.
  83. Machado FA, Zahn TMG, Marroig G. 2018. Evolution of morphological integration in the skull of Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial traits. Evolution 72:1399–419
    [Google Scholar]
  84. Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. 2018. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2:1128–38
    [Google Scholar]
  85. Marroig G, Cheverud J. 2010. Size as a line of least resistance II: direct selection on size or correlated response due to constraints?. Evolution 64:1470–88
    [Google Scholar]
  86. McGuigan K, Blows MW. 2007. The phenotypic and genetic covariance structure of drosophilid wings. Evolution 61:902–11
    [Google Scholar]
  87. McShea DW. 1996. Metazoan complexity and evolution: Is there a trend?. Evolution 50:477–92
    [Google Scholar]
  88. McShea DW 2017. Evolution of complexity. Evolutionary Developmental Biology: A Reference Guide L Nuño de la Rosa, GB Müller 169–79 Cham, Switz: Springer
    [Google Scholar]
  89. Melo D, Marroig G. 2015. Directional selection can drive the evolution of modularity in complex traits. PNAS 112:470–75
    [Google Scholar]
  90. Melo D, Porto A, Cheverud JM, Marroig G. 2016. Modularity: genes, development, and evolution. Annu. Rev. Ecol. Evol. Syst. 47:463–86
    [Google Scholar]
  91. Mezey JG, Houle D. 2005. The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution 59:1027–38
    [Google Scholar]
  92. Mitteroecker P, Bookstein F. 2007. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 56:818–36
    [Google Scholar]
  93. Moran NA. 1994. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 25:573–600
    [Google Scholar]
  94. Morrissey MB, Hadfield JD. 2012. Directional selection in temporally replicated studies is remarkably consistent. Evolution 66:435–42
    [Google Scholar]
  95. Olson ED, Miller RL. 1958. Morphological Integration Chicago: Univ. Chicago Press
  96. Orr HA. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–49
    [Google Scholar]
  97. Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13–20
    [Google Scholar]
  98. Paaby AB, Rockman MV. 2013. The many faces of pleiotropy. Trends Genet 29:66–73
    [Google Scholar]
  99. Pavlicev M, Cheverud JM, Wagner GP. 2011. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc. R. Soc. B 278:1903–12
    [Google Scholar]
  100. Pavlicev M, Hansen TF. 2011. Genotype–phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38:371–89
    [Google Scholar]
  101. Pélabon C, Firmat C, Bolstad GH, Voje KL, Houle D et al. 2014. Evolution of morphological allometry. Ann. N.Y. Acad. Sci. 1320:58–75
    [Google Scholar]
  102. Pitchers W, Nye J, Márquez EJ, Kowalski A, Dworkin I, Houle D. 2019. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics 211:1429–47
    [Google Scholar]
  103. Poon A, Otto SP. 2000. Compensating for our load of mutations: freezing the meltdown of small populations. Evolution 54:1467–79
    [Google Scholar]
  104. Porto A, de Oliveira FB, Shirai LT, De Conto V, Marroig G. 2009. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol. Biol. 36:118–35
    [Google Scholar]
  105. Porto A, Schmelter R, VandeBerg JL, Marroig G, Cheverud JM. 2016. Evolution of the genotype-to-phenotype map and the cost of pleiotropy in mammals. Genetics 204:1601–12
    [Google Scholar]
  106. Porto A, Shirai LT, de Oliveira FB, Marroig G. 2013. Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution 67:3305–22
    [Google Scholar]
  107. Price GR. 1972. Fisher's “fundamental theorem” made clear. Ann. Hum. Genet. 36:129–40
    [Google Scholar]
  108. Provine WB. 1986. Sewall Wright and Evolutionary Biology Chicago: Univ. Chicago Press
  109. Prud'homme B, Minervino C, Hocine M, Cande JD, Aouane A et al. 2011. Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature 473:83–86
    [Google Scholar]
  110. Raff RA. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form Chicago: Univ. Chicago Press
  111. Rees AR. 2020. Understanding the human antibody repertoire. mAbs 12:1729683
    [Google Scholar]
  112. Riedl R. 1977. A systems analytical approach to macro-evolutionary phenomena. Q. Rev. Biol. 52:351–70
    [Google Scholar]
  113. Riedl R. 1978. Order in Living Organisms New York: Wiley
  114. Rolian C. 2009. Integration and evolvability in primate hands and feet. Evol. Biol. 36:100–17
    [Google Scholar]
  115. Rolian C, Lieberman DE, Hallgrímsson B. 2010. The coevolution of human hands and feet. Evolution 64:1558–68
    [Google Scholar]
  116. Rossoni DM, Costa BMA, Giannini NP, Marroig G. 2019. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution 73:961–81
    [Google Scholar]
  117. Roth G, Wake D. 1989. Conservatism and innovation in the evolution of feeding in vertebrates. Complex Organismal Functions: Integration and Evolution in Vertebrates DB Wake, G Roth 7–21 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  118. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–74
    [Google Scholar]
  119. Shi H, Kichaev G, Pasaniuc B. 2016. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 99:139–53
    [Google Scholar]
  120. Simon MN, Brandt R, Kohlsdorf T, Arnold SJ. 2019. Bite performance surfaces of three ecologically divergent Iguanidae lizards: relationships with lower jaw bones. Biol. J. Linn. Soc. 127:810–25
    [Google Scholar]
  121. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press
  122. Stebbins GL Jr. 1951. Natural selection and the differentiation of angiosperm families. Evolution 5:299–324
    [Google Scholar]
  123. Svensson EI, Calsbeek R. 2012. The Adaptive Landscape in Evolutionary Biology Oxford, UK: Oxford Univ. Press
  124. Swiderski DL, Zelditch ML. 2022. Complex adaptive landscape for a “Simple” structure: the role of trade-offs in the evolutionary dynamics of mandibular shape in ground squirrels. Evolution 76:946–65
    [Google Scholar]
  125. Sztepanacz JL, Blows MW. 2017. Accounting for sampling error in genetic eigenvalues using random matrix theory. Genetics 206:1271–84
    [Google Scholar]
  126. Sztepanacz JL, Houle D. 2019. Cross-sex genetic covariances limit the evolvability of wing-shape within and among species of Drosophila. Evolution 73:1617–33
    [Google Scholar]
  127. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  128. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J. 2011. The million-year wait for macroevolutionary bursts. PNAS 108:15908–13
    [Google Scholar]
  129. Valentine JW, Collins AG, Meyer CP. 1994. Morphological complexity increase in metazoans. Paleobiology 20:131–42
    [Google Scholar]
  130. Van de Peer Y, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10:725–32
    [Google Scholar]
  131. Vermeij GJ. 1973a. Adaptation, versatility, and evolution. Syst. Zool. 22:466–77
    [Google Scholar]
  132. Vermeij GJ. 1973b. Biological versatility and earth history. PNAS 70:1936–38
    [Google Scholar]
  133. Vermeij GJ. 2015. Forbidden phenotypes and the limits of evolution. Interface Focus 5:20150028
    [Google Scholar]
  134. Voje KL, Grabowski M, Holstad A, Porto A, Tsuboi M, Bolstad GH. 2023. Does lack of evolvability constrain adaptation? Is so, on what time scales?. See Hansen et al. 2023
  135. Voje KL, Hansen TF, Egset CK, Bolstad GH, Pélabon C. 2014. Allometric constraints and the evolution of allometry. Evolution 68:866–85
    [Google Scholar]
  136. Wagner A. 2012. High-dimensional adaptive landscapes facilitate evolutionary innovation. The Adaptive Landscape in Evolutionary Biology EI Svensson, R Calsbeek 271–82 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  137. Wagner GP. 1988. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evol. Biol. 1:45–66
    [Google Scholar]
  138. Wagner GP. 1996. Homologues, natural kinds and the evolution of modularity. Amer. Zool. 36:36–43
    [Google Scholar]
  139. Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–76
    [Google Scholar]
  140. Wagner GP, Booth G, Bagheri-Chaichian H. 1997. A population genetic theory of canalization. Evolution 51:329–47
    [Google Scholar]
  141. Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM. 2008. Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature 452:470–72
    [Google Scholar]
  142. Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat. Rev. Genet. 8:921–31
    [Google Scholar]
  143. Wagner GP, Zhang JZ. 2011. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12:204–13
    [Google Scholar]
  144. Walsh B, Blows MW. 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40:41–59
    [Google Scholar]
  145. Wang Z, Liao B-Y, Zhang J. 2010. Genomic patterns of pleiotropy and the evolution of complexity. PNAS 107:18034–39
    [Google Scholar]
  146. Waxman D, Welch JJ. 2005. Fisher's microscope and Haldane's ellipse. Am. Nat. 166:447–57
    [Google Scholar]
  147. Welch JJ, Waxman D. 2003. Modularity and the cost of complexity. Evolution 57:1723–34
    [Google Scholar]
  148. West-Eberhard M-J. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
  149. Whitlock MC. 1997. Founder effects and peak shifts without genetic drift: Adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51:1044–48
    [Google Scholar]
  150. Williams GC. 1992. Natural Selection: Domains, Levels and Challenges Oxford, UK: Oxford Univ. Press
  151. Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. VI Int. Congr. Genet 1:356–66
    [Google Scholar]
  152. Young NM, Hallgrímsson B. 2005. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59:2691–704
    [Google Scholar]
  153. Young NM, Wagner GP, Hallgrímsson B. 2010. Development and the evolvability of human limbs. PNAS 107:3400–5
    [Google Scholar]
  154. Zelditch ML, Goswami A. 2021. What does modularity mean?. Evol. Dev. 23:377–403
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-090809
Loading
/content/journals/10.1146/annurev-ecolsys-102320-090809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error