Skip to main content
Log in

Design of Measuring and Controlling Circuit for Digital Output MEMS Gyroscope with Zero Output Correction

  • Original Article
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Angular velocity measurement is a very important measurement parameter in industrial manufacturing field and different scientific applications. The design of gyro measurement and control circuit is always the most challenging and reliable task of angular velocity measurement system. This paper introduces the design and implementation of a measurement and control circuit for digital output of gyro for angular velocity measurement. The design of measuring and controlling circuit with high precision digital output is presented. A method of on-chip scale factor and zero output compensation correction for angular velocity measurement is introduced. Peak detection and proportional integral controller are used to replace the phase-locked loop in the driving circuit, which makes the driving loop of gyro system have good robustness. A sigma-delta (ΣΔ) digital-to-analog converter is designed for digital output of angular velocity signal. Finally, the least square method is used to evaluate the nonlinearity of angular velocity measurement system according to test results, and the zero output and scale factor uncertainty of the measurement system are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. I. P. Prikhodko, S. Nadig, J. A. Gregory et al., Half-a-month stable 0.2 degree-per-hour mode-matched mems gyroscope, in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.

  2. Y. Zhao, J. Zhao, X. Wang et al., IEEE J. Solid State Circ., 53 (2018) 2636.

    Article  ADS  Google Scholar 

  3. R. Wilcock and M. Kraft, Genetic algorithm for the design of electro-mechanical sigma delta modulator mems sensors. Sensors, 11 (2011) 9217–9232.

    Article  ADS  Google Scholar 

  4. K.V. Shcheglov and A.D. Challoner, Isolated planar gyroscope with internal radial sensing and actuation. US Patent, 5646346 (1997) A7.

    Google Scholar 

  5. D.D. Lynch, Vibration gyro analysis by the method of averaging [C]. In: The 2nd Saint Petersburg International Conference on Gyroscope Technology and Navigation, pp. 26–34 (1995)

  6. D.D. Lynch, Coriolis Vibratory Gyros [C], Proceed. Symp. Gyro. Technol. (1998)

  7. Y. Liu and A.D. Challoner, Electronic bias compensation for a gyroscope. US Patent, 0179105 (2012) A1.

    Google Scholar 

  8. D.B. Xiao, X. Zhou, Q. Li, Z.Q. Hou and X. Xi, Design of a Disk Resonator Gyroscope With High Mechanical Sensitivity by Optimizing the Ring Thickness Distribution. J. Microelectromech., 25 (2016) 606–616.

    Article  Google Scholar 

  9. P. Taheri-Tehrani, O. Izyumin, I. Izyumin, C.H. Ahn, E.J. Ng, V.A. Hong, Y. Yang, T.W. Kenny, B.E. Boser, D.A. Horsley, Disk resonator gyroscope with whole-angle mode operation. In: Proceedings of the IEEE ISISS 2015, Hapuna Beach, HI, USA, pp. 23–26 (2015)

  10. R. Fang, W. Lu, C. Liu, Z.J. Chen, Y. Ju, G.N. Wang, L.J. Ji, D.S. Yu, A low-noise interface circuit for MEMS vibratory gyroscope. In: Proceedings of the 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, pp. 1456–1458 (2010)

  11. A.D. Challoner, H.H. Ge, J.Y. Liu, Boeing disc resonator gyroscope. In: Proceedings of the Position, Location & Navigation Symposium-plans, Monterey, CA, USA (2014)

  12. Y.H. Wang, L. Yin, D.L. Chen, X.W. Liu, A method to reduce harmonic distortion of MEMS accelerometer. Int. J. Mod. Phys. B. (2018) 32

  13. P. Ward and A. Duwel, Oscillator phase noise: systematic construction of an analytical model encompassing nonlinearity. IEEE Trans. Ultrason. Ferroelectr. Freq., 58 (2011) 195–205.

    Article  Google Scholar 

  14. A. Imani and H. Hashemi, Analysis and design of low phase-noise oscillators with nonlinear resonators. IEEE Trans. Microw. Theory, 60 (2012) 3749–3760.

    Article  Google Scholar 

  15. M. Pardo, L. Sorenson, W. Pan, F. Ayazi, Phase noise shaping via forced nonlinearity in piezoelectrically actuated silicon micromechanical oscillators. In: Proceedings of the 2011 IEEE 24th International Conference on Micro Electro. Mechanical Systems (MEMS), Cancun, Mexico, pp. 780–783 (2011)

  16. S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita and V. Boccuzzi, Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE J. Solid State Circ., 37 (2002) 1003–1011.

    Article  ADS  Google Scholar 

  17. Y. Wang, X. Liu, Y. Zhang and F. Qiang, A digital output MEMS DRG on-chip temperature compensation method based on virtual sensor. Modern Phys. Lett. B, 34 (2020) 2050422. https://doi.org/10.1142/S0217984920504229.

    Article  ADS  Google Scholar 

  18. V.N. Ojha, Evaluation and expression of uncertainty of measurements. J. Metrol. Soc. India, 13 (1998) 71–84.

    Google Scholar 

  19. K. Kalita, P.K. Nipan Das and U.S. Boruah, Design and uncertainty evaluation of a strain measurement system. MAPAN-J. Metrol. Soc India, 31 (2016) 17–24. https://doi.org/10.1007/s12647-015-0155-z.

    Article  Google Scholar 

  20. S. Nitzan, T.H. Su, C. Ahn, E. Ng, V. Hong, Y. Yang, T. Kenny and D.A. Horsley, Impact of gyroscope operation above the critical bifurcation threshold on scale factor and bias instability. Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 26–30 (2014) 749–752.

    Google Scholar 

  21. L. Xu, H. Li, C. Yang et al., Comparison of three automatic mode-matching methods for silicon micro-gyroscopes based on phase characteristic. IEEE Sens. J., 16 (2016) 610–619.

    Article  ADS  Google Scholar 

  22. Y.X. Liu, W.L. Feng, C.H. He, et al., Design of a digital closed control loop for the sense mode of a mode-matching MEMS vibratory gyroscope[C]. In: 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE-NEMS 2014, pp. 199–203 (2014)

Download references

Acknowledgements

This study was supported by the National Research Foundation of Heilongjiang Province of China (No. ZD2021F004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Cao, S. & Leng, S. Design of Measuring and Controlling Circuit for Digital Output MEMS Gyroscope with Zero Output Correction. MAPAN 38, 217–230 (2023). https://doi.org/10.1007/s12647-022-00579-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00579-w

Keywords

Navigation