Skip to main content
Log in

Effect of Cr and isothermal holding temperature on microstructure and properties of complex phase steel with high formability (CH steel)

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of Cr contents (0.3 and 1.0 wt.%) and isothermal holding temperatures (400, 440, and 480 °C) on the microstructure evolution and properties of complex phase steel with high formability (CH steel) were investigated using dilatometry, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction. The results show that the microstructures of CH steel with 0.3 wt.% Cr are ferrite, granular bainite, martensite, and retained austenite, while no ferrite is observed in the microstructure of CH steel with 1.0 wt.% Cr in the same process. Cr promotes the precipitation of (Nb, Ti)C in the high-temperature austenite region through theoretical calculations and TEM observations. Cr retards the bainite transformation and refines the grain size of CH steel. Furthermore, as isothermal holding temperature increases from 400 to 480 °C, the bainite and retained austenite fractions of two CH steels decrease, while the martensite fraction increases in the steels after final quenching. Consequently, the strength has an increasing tendency and the total elongation has a decreasing tendency with increasing isothermal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.H. Schmitt, T. Iung, Comptes Rendus Physique 19 (2018) 641–656.

    Article  Google Scholar 

  2. K. Sugimoto, M. Mukherjee, in: R. Rana, S.B. Singh (Eds.), Automotive Steels, Design, Metallurgy, Processing and Applications, Woodhead Publishing, 2017, pp. 217–257.

    Chapter  Google Scholar 

  3. Z.Z. Zhao, W.J. Chen, P.F. Gao, T. Kang, Y. Zhao, D. Tang, J. Iron Steel Res. 32 (2020) 1059–1076.

    Google Scholar 

  4. N. Fonstein, H.J. Jun, G. Huang, S. Sadagopan, B. Yan, in: AIST Steel Properties and Applications Conference Proceedings: Combined with MS&T'10 Materials Science and Technology, Columbus, Ohio, USA, 2011, pp. 333–341.

  5. E. Song, G.H. Lee, H. Jeon, B.J. Park, J.G. Lee, J.Y. Kim, Mater. Sci. Eng. A 817 (2021) 141353.

    Article  Google Scholar 

  6. X.D. Tan, D. Ponge, W.J. Lu, Y.B. Xu, H.S. He, J. Yan, D. Wu, D. Raabe, Acta Mater. 186 (2020) 374–388.

    Article  Google Scholar 

  7. Y. Wang, K. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Mater. Sci. Eng. A 552 (2012) 288–294.

    Article  Google Scholar 

  8. B. Ehrhardt, T. Berger, H. Hofmann, T.W. Schaumann, Steel Grips 2 (2004) 247–255.

    Google Scholar 

  9. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, A. Pichler, Steel Res. Int. 80 (2009) 71–77.

    Google Scholar 

  10. A. Béché, H.S. Zurob, C.R. Hutchinson, Metall. Mater. Trans. A 38 (2007) 2950–2955.

    Article  Google Scholar 

  11. Z.C. Zhao, Y.H. Su, H.J. Huang, Hot Working Technology 44 (2015) No. 15, 60–62.

    Google Scholar 

  12. M. Volosova, A. Vereschaka, N. Andreev, C. Sotova, J. Bublikov, MaterialsToday: Proceedings 38 (2021) 1421–1427.

  13. U.R. Lenel, B.R. Knott, Metall. Mater. Trans. A 18 (1987) 847–855.

    Article  Google Scholar 

  14. X. Zhang, W. Du, X.Z. Huang, Baosteel Technology (2015) No. 2, 6–12.

    Google Scholar 

  15. Y.L. Niu, Effect of Cr on recrystallization and phase transformation of low carbon and high niobium X80 pipeline steel, Kunming University of Science and Technology, Kunming, China, 2009.

    Google Scholar 

  16. Z.S. Yao, H.J. Hu, J.Y. Tian, M.X. Zhou, G. Xu, Iron and Steel 55 (2020) No. 12, 66–71+80.

  17. Z.Y. Hou, D. Wu, S.X. Zheng, X.L. Yang, Z. Li, Y.B. Xu, Steel Res. Int. 87 (2016) 1203–1212.

    Article  Google Scholar 

  18. J. Lu, H. Yu, X.N. Duan, C.H. Song, Mater. Sci. Eng. A 774 (2020) 138868.

    Article  Google Scholar 

  19. H.S. Fang, B.Z. Bai, X.H. Zheng, Y.K. Zheng, X.Y. Chen, R.F. Zhao, Acta Metall. Sin. 22 (1986) No. 4, 5–10+141–142.

  20. S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501 (2005) 387–394.

    Article  Google Scholar 

  21. L. Ryde, Mater. Sci. Technol. 22 (2006) 1297–1306.

    Article  Google Scholar 

  22. P.F. Gao, W.J. Chen, F. Li, B.J. Ning, Z.Z. Zhao, Mater. Lett. 273 (2020) 127955.

    Article  Google Scholar 

  23. E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747.

    Article  Google Scholar 

  24. D.B. Park, M.Y. Huh, J.H. Shim, J.Y. Suh, K.H. Lee, W.S. Jung, Mater. Sci. Eng. A 560 (2013) 528–534.

    Article  Google Scholar 

  25. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76 (2014) 425–433.

    Article  Google Scholar 

  26. D.K. Banerjee, U.R. Kattner, J. Mater. Sci. 44 (2009) 3741–3746.

    Article  Google Scholar 

  27. G. Götz, W. Blum, Mater. Sci. Eng. A 348 (2003) 201–207.

    Article  Google Scholar 

  28. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141–155.

    Article  Google Scholar 

  29. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83 (2015) 383–396.

    Article  Google Scholar 

  30. X.D. Tan, Y.B. Xu, D. Ponge, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, D. Wu, D. Raabe, Mater. Sci. Eng. A 656 (2016) 200–215.

    Article  Google Scholar 

  31. B. Gao, Z.L. Tan, P. Luo, G.H. Gao, M. Zhang, R.D.K. Misra, B.Z. Bai, Steel Res. Int. 91 (2020) 1900510.

    Article  Google Scholar 

  32. H.K.D.H. Bhadeshia, D.V. Edmonds, Acta Metall. 28 (1980) 1265–1273.

    Article  Google Scholar 

  33. A.M. Ravi, A. Kumar, M. Herbig, J. Sietsma, M.J. Santofimia, Acta Mater. 188 (2020) 424–434.

    Article  Google Scholar 

  34. A.M. Ravi, J. Sietsma, M.J. Santofimia, Acta Mater. 105 (2016) 155–164.

    Article  Google Scholar 

  35. C.J. Li, Bainite transformation theory, Metallurgical Industry Press, Beijing, China, 1995.

    Google Scholar 

  36. J.Z. Xue, Z.Z. Zhao, Z.Y. Mo, H. Li, H.H. Wu, W.L. Xiong, D. Tang, Mater. Res. Express 6 (2019) 116564.

    Article  Google Scholar 

  37. Q.L. Yong, The second phase in steel materials, Machinery Industry Press, Beijing, China, 2006.

    Google Scholar 

  38. M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54 (2006) 1431–1440.

    Article  Google Scholar 

  39. M. Hillert, B. Sundman, Acta Metall. 24 (1976) 731–743.

    Article  Google Scholar 

  40. H.H. Xiong, H.H. Zhang, H.N. Zhang, L. Gan, J. Wuhan Univ. Technol. (Mater. Sci.) 33 (2018) 1076–1081.

  41. C. Hofer, F. Winkelhofer, H. Clemens, S. Primig, Mater. Sci. Eng. A 664 (2016) 236–246.

    Article  Google Scholar 

  42. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  43. J.Z. Xue, Z.Z. Zhao, B. Chen, X.H. Liu, H.H. Wu, H. Li, W.L. Xiong, Mater. Res. Express 6 (2019) 0965c8.

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Key Research and Development Plan of Shandong Province (No. 2019TSLH0103), the New Energy Automobile Material Production and Application Demonstration Platform Project (No. TC180A6MR-1), and Guangxi Innovation-Driven Development Special Fund Project (No. AA18242012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Xh., Gao, Pf., Chen, Wj. et al. Effect of Cr and isothermal holding temperature on microstructure and properties of complex phase steel with high formability (CH steel). J. Iron Steel Res. Int. 30, 328–337 (2023). https://doi.org/10.1007/s42243-022-00813-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00813-4

Keywords

Navigation