Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-selective amination towards tertiary aliphatic allylamines

Abstract

Aliphatic allylamines are widely used for the synthesis of diverse building blocks for agrochemicals and pharmaceuticals; there is therefore considerable interest in developing versatile and direct routes to aliphatic allylamines using common chemical feedstocks—olefins and amines. However, examples of such coupling reactions remain limited. It is even more challenging to achieve this goal with precise site control. Here we report that the combination of a photocatalyst and cobaloxime enables site-selective amination of olefins with secondary alkyl amines to afford allylic amines, eliminating the need for oxidants. This method is compatible with a broad scope of olefins and can be extended to achieve a site- and diastereoselective amination of terpenes. Mechanistic studies disclose that the reaction proceeds via a cobaloxime-promoted hydrogen atom transfer pathway to afford the product that results from cleavage of the stronger, primary allylic C–H bonds over other weaker allylic C–H bond options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of strategies for allylic amination.
Fig. 2: Scope of olefins for site-selective allylic amination.
Fig. 3: Additional scope of di-, tri- and tetrasubstituted olefins and limitations.
Fig. 4: Scope of aliphatic amines.
Fig. 5: The influence of olefin equivalents and cobaloximes.
Fig. 6: Mechanistic studies and DFT calculations.
Fig. 7: Application and strategic expansion.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information, or from the authors on reasonable request.

References

  1. Mayol-Llinas, J., Nelson, A., Farnaby, W. & Ayscough, A. Assessing molecular scaffolds for CNS drug discovery. Drug Discov. Today 22, 965–969 (2017).

    Article  CAS  Google Scholar 

  2. Stütz, A. Allylamine derivatives—a new class of active substances in antifungal chemotherapy. Angew. Chem. Int. Ed. 26, 320–328 (1987).

    Article  Google Scholar 

  3. Petranyi, G., Ryder, N. & Stutz, A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224, 1239–1241 (1984).

    Article  CAS  Google Scholar 

  4. Ramirez, T. A., Zhao, B. & Shi, Y. Recent advances in transition metal-catalyzed sp3 C–H amination adjacent to double bonds and carbonyl groups. Chem. Soc. Rev. 41, 931–942 (2012).

    Article  CAS  Google Scholar 

  5. Georgopapadakou, N. H. & Walsh, T. J. Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 40, 279–291 (1996).

    Article  CAS  Google Scholar 

  6. Balfour, J. A. & Faulds, D. Terbinafine A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs 43, 259–284 (1992).

    Article  CAS  Google Scholar 

  7. Wang, J., Chen, Y., Ye, C., Qin, A. & Tang, B. Z. C(sp3)–H polyamination of internal alkynes toward regio- and stereoregular functional poly(allylic tertiary amine)s. Macromolecules 53, 3358–3369 (2020).

    Article  CAS  Google Scholar 

  8. Shiratori, S. S. & Rubner, M. F. pH-Dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33, 4213–4219 (2000).

    Article  CAS  Google Scholar 

  9. Johannsen, M. & Jørgensen, K. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).

    Article  CAS  Google Scholar 

  10. Bayeh, L., Le, P. Q. & Tambar, U. K. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 547, 196–200 (2017).

    Article  CAS  Google Scholar 

  11. Teh, W. P., Obenschain, D. C., Black, B. M. & Michael, F. E. Catalytic metal-free allylic C–H amination of terpenoids. J. Am. Chem. Soc. 142, 16716–16722 (2020).

    Article  CAS  Google Scholar 

  12. Liang, C. et al. Toward a synthetically useful stereoselective C–H amination of hydrocarbons. J. Am. Chem. Soc. 130, 343–350 (2008).

    Article  CAS  Google Scholar 

  13. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc. 133, 17207–17216 (2011).

    Article  CAS  Google Scholar 

  14. Reed, S. A., Mazzotti, A. R. & White, M. C. A catalytic, Brønsted base strategy for intermolecular allylic C–H amination. J. Am. Chem. Soc. 131, 11701–11706 (2009).

    Article  CAS  Google Scholar 

  15. Pattillo, C. C. et al. Aerobic linear allylic C–H amination: overcoming benzoquinone inhibition. J. Am. Chem. Soc. 138, 1265–1272 (2016).

    Article  CAS  Google Scholar 

  16. Yin, G., Wu, Y. & Liu, G. Scope and mechanism of allylic C–H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone. J. Am. Chem. Soc. 132, 11978–11987 (2010).

    Article  CAS  Google Scholar 

  17. Lei, H. & Rovis, T. A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nat. Chem. 12, 725–731 (2020).

    Article  CAS  Google Scholar 

  18. Burman, J. S. & Blakey, S. B. Regioselective intermolecular allylic C–H amination of disubstituted olefins via rhodium/π-allyl intermediates. Angew. Chem. Int. Ed. 56, 13666–13669 (2017).

    Article  CAS  Google Scholar 

  19. Cheng, Q., Chen, J., Lin, S. & Ritter, T. Allylic amination of alkenes with iminothianthrenes to afford alkyl allylamines. J. Am. Chem. Soc. 142, 17287–17293 (2020).

    Article  CAS  Google Scholar 

  20. Wang, D. J., Targos, K. & Wickens, Z. K. Electrochemical synthesis of allylic amines from terminal alkenes and secondary amines. J. Am. Chem. Soc. 143, 21503–21510 (2021).

    Article  CAS  Google Scholar 

  21. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  Google Scholar 

  22. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  Google Scholar 

  23. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  Google Scholar 

  24. Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R(1)–H/R(2)–H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article  CAS  Google Scholar 

  25. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

    Article  CAS  Google Scholar 

  26. Ruffoni, A. et al. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11, 426–433 (2019).

    Article  CAS  Google Scholar 

  27. Ganley, J. M., Murray, P. R. D. & Knowles, R. R. Photocatalytic generation of aminium radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).

    Article  CAS  Google Scholar 

  28. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  Google Scholar 

  29. Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. Evidence for formation of a Co-H bond from (H2O)2Co(dmgBF2)2 under H2: application to radical cyclizations. J. Am. Chem. Soc. 134, 14662–14665 (2012).

    Article  CAS  Google Scholar 

  30. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  Google Scholar 

  31. He, K.-H. et al. Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3084 (2017).

    Article  CAS  Google Scholar 

  32. Rodrigalvarez, J. et al. Catalytic C(sp3)–H bond activation in tertiary alkylamines. Nat. Chem. 12, 76–81 (2020).

    Article  CAS  Google Scholar 

  33. Avdagić, A., Gelo-Pujić, M. & Šunjić, V. Enantioselective chemoenzymatic synthesis of the S-enantiomer of the systemic fungicide fenpropimorph. Synthesis 1995, 1427–1431 (1995).

  34. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  Google Scholar 

  35. Burčul, F., Blažević, I., Radan, M. & Politeo, O. Terpenes, phenylpropanoids, sulfur and other essential oil constituents as inhibitors of cholinesterases. Curr. Med. Chem. 27, 4297–4343 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China 22031008 (A.L.) and Science Foundation of Wuhan 2020010601012192 (A.L.). We thank Y. Xi (UC Santa Barbara) for helpful discussions; W.L. (WHU) for the revision of manuscript; W. Kong (WHU) and X. Dong (WHU) for assistance with chiral HPLC analysis; and C. Bao (Taiwan Photon Source, TPS-44A), J. Chen (TPS-44A) and J. Lee (TPS-44A) for XAFS testing. X.Q. acknowledges the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and S.W. conceived the work. S.W., Y.G., L.N and R.S. designed the experiments and analysed the data. S.W., Y.G., D.R., H.S. and X.L. performed the experiments. S.W., D.Y. and D.Z. contributed to the XAFS data. S.W. contributed to the EPR data. Z.L. and X.Q. contributed to the DFT calculations.

Corresponding authors

Correspondence to Xiaotian Qi or Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Wujiong Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Tables 1–7 and Figs. 1–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, Y., Liu, Z. et al. Site-selective amination towards tertiary aliphatic allylamines. Nat Catal 5, 642–651 (2022). https://doi.org/10.1038/s41929-022-00818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00818-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing