Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization

A Publisher Correction to this article was published on 03 August 2022

This article has been updated

Abstract

The clean conversion of carbon dioxide and water to a single multicarbon product and O2 using sunlight via photocatalysis without the assistance of organic additives or electricity remains an unresolved challenge. Here we report a bio-abiotic hybrid system with the non-photosynthetic, CO2-fixing acetogenic bacterium Sporomusa ovata grown on a scalable and cost-effective photocatalyst sheet consisting of a pair of particulate semiconductors (La and Rh co-doped SrTiO3 (SrTiO3:La,Rh) and Mo-doped BiVO4 (BiVO4:Mo)). The biohybrid effectively produces acetate (CH3COO) and oxygen (O2) using only sunlight, CO2 and H2O, achieving a solar-to-acetate conversion efficiency of 0.7% at ambient conditions (298 K, 1 atm). The photocatalyst sheet oxidizes water to O2 and provides electrons and hydrogen (H2) to S. ovata for the selective synthesis of CH3COO from CO2. To demonstrate utility in a closed carbon cycle, the solar-generated acetate was used directly as feedstock in a bioelectrochemical system for electricity generation. These semi-biological approaches thus offer a promising strategy for sustainably and cleanly fixing CO2 and closing the carbon cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S. ovata|sheet hybrid system.
Fig. 2: Photosynthetic activity of S. ovata|sheet hybrids.
Fig. 3: Morphology of S. ovata|sheet hybrids.
Fig. 4: Viability of S. ovata|sheet hybrids.
Fig. 5: Electricity production by G. sulfurreducens|IO-ITO electrode.

Similar content being viewed by others

Data availability

All source data that support the findings of this study are available from the University of Cambridge data repository: https://doi.org/10.17863/CAM.84871.

Change history

References

  1. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  CAS  Google Scholar 

  2. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  3. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  5. Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017).

    Article  CAS  Google Scholar 

  6. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  7. Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lapinsonnière, L., Picot, M. & Barrière, F. Enzymatic versus microbial bio-catalyzed electrodes in bio-electrochemical systems. ChemSusChem 5, 995–1005 (2012).

    Article  PubMed  Google Scholar 

  9. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    Article  CAS  Google Scholar 

  10. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Bian, B., Bajracharya, S., Xu, J., Pant, D. & Saikaly, P. E. Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresour. Technol. 302, 122863 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  14. Liu, C. et al. Nanowire–Bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Sakimoto, K. K., Zhang, S. J. & Yang, P. Cysteine–cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic–biological hybrid system. Nano Lett. 16, 5883–5887 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Su, Y. et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).

    Article  CAS  Google Scholar 

  19. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Geisz, J. F. et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020).

    Article  CAS  Google Scholar 

  21. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  22. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    Article  CAS  Google Scholar 

  23. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  24. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  25. Gai, P. et al. Solar-powered organic semiconductor–bacteria biohybrids for CO2 reduction into acetic acid. Angew. Chem. Int. Ed. Engl. 59, 7224–7229 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Göbbels, L. et al. Cysteine: an overlooked energy and carbon source. Sci. Rep. 11, 2139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaden, J., S. Galushko, A. & Schink, B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch. Microbiol. 178, 53–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, D., Dong, H., Zhao, L. & Wang, H. Smectite reduction by Shewanella species as facilitated by cystine and cysteine. Geomicrobiol. J. 31, 53–63 (2014).

    Article  Google Scholar 

  31. Zhu, S. & Wang, D. Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 7, 1700841 (2017).

    Article  Google Scholar 

  32. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    Article  CAS  Google Scholar 

  33. Wang, Q. et al. Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. J. Catal. 328, 308–315 (2015).

    Article  CAS  Google Scholar 

  34. Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103–e00110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q. et al. Printable photocatalyst sheets incorporating a transparent conductive mediator for Z-scheme water splitting. Joule 2, 2667–2680 (2018).

    Article  CAS  Google Scholar 

  38. Ebihara, M. et al. Charge carrier mapping for Z-scheme photocatalytic water-splitting sheet via categorization of microscopic time-resolved image sequences. Nat. Commun. 12, 3716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maeda, K. et al. Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. Int. Ed. Engl. 45, 7806–7809 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fang, X., Kalathil, S., Divitini, G., Wang, Q. & Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Natl Acad. Sci. USA 117, 5074–5080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cerdan, S., Künnecke, B. & Seelig, J. Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J. Biol. Chem. 265, 12916–12926 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Wasylenko, T. M. & Stephanopoulos, G. Kinetic isotope effects significantly influence intracellular metabolite 13C labeling patterns and flux determination. Biotechnol. J. 8, 1080–1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Millard, P., Portais, J.-C. & Mendes, P. Impact of kinetic isotope effects in isotopic studies of metabolic systems. BMC Syst. Biol. 9, 64 (2015).

  44. Morello, G., Megarity, C. F. & Armstrong, F. A. The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades. Nat. Commun. 12, 340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kudo, A., Omori, K. & Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999).

    Article  CAS  Google Scholar 

  46. Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, Z. & Imlay, J. A. When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 19, 774–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jenney, F. E., Verhagen, M. F. J. M., Cui, X. & Adams, M. W. W. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Nakanishi, T., Inoue, H. & Kitamura, M. Cloning and expression of the superoxide dismutase gene from the obligate anaerobic bacterium Desulfovibrio vulgaris (Miyazaki F). J. Biochem. 133, 387–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G. & Kurtz, D. M. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183, 101–108 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ward, D. E. et al. The NADH oxidase from Pyrococcus furiosus. Eur. J. Biochem. 268, 5816–5823 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, W. C., Coppi, M. V. & Lovley, D. R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl. Environ. Microbiol. 70, 2525–2528 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdollahi, H. & Wimpenny, J. W. T. Effects of oxygen on the growth of Desulfovibrio desulfuricans. Microbiology 136, 1025–1030 (1990).

    CAS  Google Scholar 

  54. Boga, H. I. & Brune, A. Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl. Environ. Microbiol. 69, 779–786 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poehlein, A., Gottschalk, G. & Daniel, R. First insights into the genome of the Gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662. Genome Announc. 1, e00734-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Last, G. V. & Schmick, M. T. A review of major non-power-related carbon dioxide stream compositions. Environ. Earth Sci. 74, 1189–1198 (2015).

    Article  CAS  Google Scholar 

  57. Agreda, V. H. Acetic Acid and Its Derivatives (CRC Press, 1993).

  58. Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Logan, B. E., Rossi, R., Ragab, A. A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    Article  PubMed  Google Scholar 

  61. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Rahaman, L. Su and M. Miller (University of Cambridge) for helpful discussions, and H. Greer at the University of Cambridge for assisting in the collection of SEM–EDX element-mapping images. This work was supported by the European Research Council Consolidator Grant ‘MatEnSAP’ (no. 682833 to E.R.), the UK Research and Innovation Cambridge Creative Circular Plastics Centre (grant no. EP/S025308), European Marie Sklodowska-Curie individual Fellowships (nos. GAN 793996 to Q.W. and GAN 744317 to S.K.), Research England’s Expanding Excellence in England (E3) Fund (to S.K.), the Cambridge Trust (Cambridge Thai Foundation Award to C.P.) and a Trinity-Henry Barlow Scholarship (to C.P.).

Author information

Authors and Affiliations

Authors

Contributions

Q.W., S.K. and E.R. conceived the idea and designed the project. Q.W. prepared the photocatalyst sheet and photoelectrodes and conducted physical characterization of semiconductors. S.K. and Q.W. carried out bacterial culture. S.K. quantified proteins and performed microbial electrogenesis. C.P. recorded SEM and SEM–EDX element-mapping images. Q.W. and C.P. carried out H2 and O2 quantification. S.K., C.D.S. and C.P. quantified acetate. The O2 tolerance ability of bacteria was investigated by C.D.S. and S.K. C.D.S., S.K. and Q.W. conducted isotopic labelling experiments. All authors analysed the data and discussed the results. Q.W., S.K. and E.R. wrote the manuscript with assistance from the co-authors. E.R. supervised the project.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Kalathil, S., Pornrungroj, C. et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat Catal 5, 633–641 (2022). https://doi.org/10.1038/s41929-022-00817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00817-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing