Skip to main content
Log in

Quasinormal frequencies of the dimensionally reduced BTZ black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We calculate numerically the quasinormal frequencies of the Klein-Gordon and Dirac fields moving in the two-dimensional dimensionally reduced BTZ black hole. Our work extends results previously published on the damped oscillations of this black hole. First, we compute the quasinormal frequencies of the minimally coupled Klein-Gordon field for a range of the dimensionally reduced BTZ black hole physical parameters that is not previously analyzed. Furthermore we determine, for the first time, the quasinormal frequencies of the Dirac field propagating in the dimensionally reduced BTZ black hole. For the Dirac field we use the Horowitz-Hubeny method and the asymptotic iteration method, while for the Klein-Gordon field the extension of the previous results is based on the asymptotic iteration method. Finally we discuss our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In Ref. [22] are studied the same 2D black holes that in this paper, but the Jackiw-Teitelboim black hole is called “uncharged Achucarro-Ortiz black hole”, whereas the dimensionally reduced BTZ black hole is called “charged Achucarro-Ortiz black hole”. Since the last name is similar to one previously used to denote a three-dimensional black hole related to the BTZ solution (see for example [30] and references cited therein), in this paper, to avoid confusion, we do not employ the names given to these 2D black holes in Ref. [22].

  2. We point out that in this work the radii of the horizons must always fulfill \(r_+ > r_-\).

  3. Since for constant event horizon radius, the quantities J and \(r_-\) are proportional (see the expression (5)), for the graph \({\mathbb {I}}{\mathrm {m}} (\omega )\) vs J we get a similar behavior to that shown in Fig. 3.

References

  1. Kokkotas, K.D., Schmidt, B.G.: Living Rev. Rel. 2, 2 (1999). [arXiv:gr-qc/9909058]

    Article  Google Scholar 

  2. Konoplya, R., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011). [arXiv:1102.4014 [gr-qc]]

    Article  ADS  Google Scholar 

  3. Berti, E., Cardoso, V., Starinets, A.O.: Class. Quant. Grav. 26, 163001 (2009). [arXiv:0905.2975 [gr-qc]]

    Article  ADS  Google Scholar 

  4. Chan, J., Mann, R.B.: Phys. Rev. D 55, 7546 (1997). [arXiv:gr-qc/9612026 [gr-qc]]

    Article  ADS  Google Scholar 

  5. Chan, J.S.F., Mann, R.B.: Phys. Rev. D 59, 064025 (1999)

    Article  ADS  Google Scholar 

  6. Horowitz, G.T., Hubeny, V.E.: Phys. Rev. D 62, 024027 (2000). [hep-th/9909056]

    Article  ADS  MathSciNet  Google Scholar 

  7. Avis, S.J., Isham, C.J., Storey, D.: Phys. Rev. D 18, 3565 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. Breitenlohner, P., Freedman, D.Z.: Phys. Lett. B 115, 197–201 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. Burgess, C.P., Lutken, C.A.: Phys. Lett. B 153, 137–141 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Birmingham, D., Sachs, I., Solodukhin, S.N.: Phys. Rev. Lett. 88, 151301 (2002). [arXiv:hep-th/0112055]

    Article  ADS  MathSciNet  Google Scholar 

  11. Grumiller, D., Kummer, W., Vassilevich, D.V.: Phys. Rept. 369, 327 (2002). [hep-th/0204253]

    Article  ADS  Google Scholar 

  12. Grumiller, D., Meyer, R.: Turk. J. Phys. 30, 349 (2006). [hep-th/0604049]

    Google Scholar 

  13. Becar, R., Lepe, S., Saavedra, J.: Phys. Rev. D 75, 084021 (2007). [arXiv:gr-qc/0701099]

    Article  ADS  MathSciNet  Google Scholar 

  14. Lopez-Ortega, A.: Int. J. Mod. Phys. D 18, 1441 (2009). [arXiv:0905.0073 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  15. Myung, Y.S., Moon, T.: Phys. Rev. D 86, 024006 (2012). [arXiv:1204.2116 [hep-th]]

    Article  ADS  Google Scholar 

  16. Becar, R., Lepe, S., Saavedra, J.: Int. J. Mod. Phys. A 25, 1713 (2010)

    Article  ADS  Google Scholar 

  17. Kettner, J., Kunstatter, G., Medved, A.J.M.: Class. Quant. Grav. 21, 5317 (2004). ([gr-qc/0408042])

    Article  ADS  Google Scholar 

  18. Lopez-Ortega, A.: Int. J. Mod. Phys. D 20, 2525 (2011). [arXiv:1112.6211 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, X.Z., Hao, J.G., Liu, D.J.: Phys. Lett. B 507, 312 (2001). ([gr-qc/0205007])

    Article  ADS  MathSciNet  Google Scholar 

  20. Estrada-Jiménez, S., Gómez-Díaz, J.R., López-Ortega, A.: Gen. Relativ. Gravit 45, 2239 (2013). [arXiv:1308.5943 [gr-qc]]

    Article  ADS  Google Scholar 

  21. Stetsko, M.M.: Eur. Phys. J. C 77, 416 (2017). [arXiv:1612.09172 [hep-th]]

    Article  ADS  Google Scholar 

  22. Cordero, R., Lopez-Ortega, A., Vega-Acevedo, I.: Gen. Relativ. Gravit 44, 917 (2012). [arXiv:1201.3605 [gr-qc]]

    Article  ADS  Google Scholar 

  23. Lopez-Ortega, A., Vega-Acevedo, I.: Gen. Relativ. Gravit 43, 2631 (2011). [arXiv:1105.2802 [gr-qc]]

    Article  ADS  Google Scholar 

  24. Bhattacharjee, S., Sarkar, S., Bhattacharyya, A.: Phys. Rev. D 103(2), 024008 (2021). [arXiv:2011.08179 [gr-qc]]

    Article  ADS  Google Scholar 

  25. Cadoni, M., Oi, M., Sanna, A.P.: JHEP 01, 087 (2022). [arXiv:2111.07763 [gr-qc]]

    Article  ADS  Google Scholar 

  26. Hernandez-Velazquez, M.I., Lopez-Ortega, A.: Front. Astron. Space Sci. 8, 713422 (2021). [arXiv:2108.09559 [gr-qc]]

    Article  Google Scholar 

  27. Zelnikov, A.: JHEP 0807, 010 (2008). [arXiv:0805.4031 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  28. Achucarro, A., Ortiz, M.E.: Phys. Rev. D 48, 3600–3605 (1993). [arXiv:hep-th/9304068 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  29. Cardoso, V., Lemos, J.P.S.: Phys. Rev. D 63, 124015 (2001). [arXiv:gr-qc/0101052 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  30. Pourhassan, B., Övgün, A., Sakallı, İ: Int. J. Geom. Meth. Mod. Phys. 17(10), 2050156 (2020). [arXiv:1811.02193 [gr-qc]]

    Article  Google Scholar 

  31. Ciftci, H., Hall, R.L., Saad, N.: J. of Phys. A Math. Gen. 36, 11807 (2003)

    Article  ADS  Google Scholar 

  32. Cho, H., Cornell, A., Doukas, J., Naylor, W.: Class. Quant. Grav. 27, 155004 (2010). [arXiv:0912.2740 [gr-qc]]

    Article  ADS  Google Scholar 

  33. Cho, H., Cornell, A., Doukas, J., Huang, T., Naylor, W.: Adv. Math. Phys. 2012, 281705 (2012). [arXiv:1111.5024 [gr-qc]]

    Article  Google Scholar 

  34. Parker, L.E., Toms, D.J.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, United Kingdom (2009)

    Book  Google Scholar 

  35. Hod, S.: Phys. Rev. Lett. 81, 4293 (1998). [arXiv:gr-qc/9812002 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  36. Maggiore, M.: Phys. Rev. Lett. 100, 141301 (2008). [arXiv:0711.3145 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT México, SNI México, EDI IPN, COFAA IPN, and Research Project IPN SIP 20221379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. López-Ortega.

Ethics declarations

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Asymptotic iteration method

An useful method to find the eigenvalues of linear second order differential equations is the asymptotic iteration method [31,32,33]. This method works with linear second order differential equations of the form

$$\begin{aligned} y''= \lambda _0 (x)y'+s_0(x)y, \end{aligned}$$
(A1)

where the prime denotes differentiation with respect to the independent variable. Taking advantage of the symmetrical structure of Eq. (A1) we find that its first derivative takes a similar mathematical form

$$\begin{aligned} y'''= \lambda _1 (x)y'+s_1(x)y, \end{aligned}$$
(A2)

with

$$\begin{aligned} \lambda _1 =\lambda _0' + s_0 + \lambda _0^2, \quad \text {and} \quad s_1=s_0'+s_0 \lambda _0. \end{aligned}$$
(A3)

In an analogous way we find that the \((n+2)\)-th derivative of the function y is equal to [31,32,33]

$$\begin{aligned} y^{(n+2)}= \lambda _{n} (x)y'+s_{n}(x)y, \end{aligned}$$
(A4)

where

$$\begin{aligned} \lambda _n =\lambda _{n-1}' + s_{n-1} + \lambda _0 \lambda _{n-1}, \quad \text {and} \quad s_n=s_{n-1}'+s_0 \lambda _{n-1}. \end{aligned}$$
(A5)

The asymptotic aspect of the method imposes that for sufficiently large n the functions \(\lambda _n\) and \(s_n\) satisfy [31,32,33]

$$\begin{aligned} \frac{s_n}{\lambda _n} =\frac{s_{n-1}}{\lambda _{n-1}} = \alpha \end{aligned}$$
(A6)

or in an equivalent form

$$\begin{aligned} s_n \lambda _{n-1} - s_{n-1} \lambda _n = 0. \end{aligned}$$
(A7)

Solving this equation, usually known as discretization condition, we can find the QNFs of the black hole under study [32, 33].

Nevertheless, the computation of the recurrence relations (A5) requires many resources [31,32,33]. Owing this fact, in Ref. [32] is proposed an improved version of the AIM. In this version of the method we expand the functions \(\lambda _n\) and \(s_n\) around a convenient point \(\xi \), that is,

$$\begin{aligned} \lambda _n (\xi )= \sum ^\infty _{i=0} c^i _n (x- \xi )^i, \qquad \qquad s _n (\xi )= \sum ^\infty _{i=0} d^i _n (x- \xi )^i, \end{aligned}$$
(A8)

to find that the recurrence relations (A5) imply that the coefficients \(c^i _n\) and \(d^i _n\) satisfy

$$\begin{aligned} c^i _n&= (i+1)c^{i+1} _{n-1} + d^i _{n-1} + \sum ^i _{k=0} c^k _0 c^{i-k} _{n-1}, \nonumber \\ d^i _n&= (i+1) d^{i+1} _{n-1} + \sum ^i _{k=0} d^k _0 c^{i-k} _{n-1}. \end{aligned}$$
(A9)

Furthermore, we get that the discretization condition (A7) takes the form

$$\begin{aligned} d^0 _n c^0 _{n-1} - d^0 _{n-1} c^0 _n =0. \end{aligned}$$
(A10)

Solving this equation for different values of n, we numerically obtain the QNFs of the studied black hole [32, 33]. In this work we use this improved formulation of the AIM to find the QNFs of the Klein-Gordon and Dirac fields propagating in the DRBTZ black hole.

Appendix B Horowitz-Hubeny method for the Dirac field

For the Klein-Gordon field moving in the DRBTZ black hole, in Ref. [22] are calculated its QNFs taking as a basis the Horowitz-Hubeny method. Nevertheless a restriction on the values of the horizons radii was imposed, as we previously commented. For the Dirac field we can use the Horowitz-Hubeny method to compute its QNFs in the DRBTZ black hole. In what follows we describe the steps to transform the radial Eqs. (31) into a convenient form to use the Horowitz-Hubeny method [6].

First, to fulfill the boundary condition near the event horizon, we propose that the solutions of Eqs. (31) take the form

$$\begin{aligned} R_s(r)=e^{-i(\omega \pm \frac{i \kappa }{2})r_*} U_s(r), \end{aligned}$$
(B11)

to find that the functions \(U_s\) must satisfy the differential equations

$$\begin{aligned} f\frac{d^2U_s}{dr^2}+\Big (\frac{df}{dr}-2i\omega \pm \kappa \Big )\frac{dU_s}{dr}+\frac{1}{f}\Big (\frac{\kappa ^2}{4}\mp i\omega \kappa -V_s \Big )U_s=0. \end{aligned}$$
(B12)

To have an independent variable that changes in a finite interval, following to Horowitz-Hubeny [6], we make the change of variable

$$\begin{aligned} x=\frac{1}{r}, \end{aligned}$$
(B13)

to get that the radial Eqs. (B12) transform into

$$\begin{aligned} S_s(x)\frac{d^2U_s}{dx^2}+\frac{t_s(x)}{x-x_+}\frac{dU_s}{dx}+ \frac{u_s(x)}{(x-x_+)^2}U_s=0, \end{aligned}$$
(B14)

where the functions \(t_s(x)\), \(u_s(x)\), and \(S_s(x)\) are equal to

$$\begin{aligned} t_s(x)&= 2x(x^2-x_+^2)(x^2-x_-^2)^2(x + x_+) + 2x^5(x + x_+)(x^2 - x_-^2) \nonumber \\&\quad -2 x x_+^2 x_-^2 (x + x_+)(x^2 - x_-^2) + 2i\omega x^2(x+x_+)(x^2-x_-^2)x_+^2 x_-^2 \nonumber \\&\quad \mp x^2x_+(x_-^2-x_+^2)(x+x_+)(x^2-x_-^2), \nonumber \\ u_s(x)&= \frac{1}{4}x^2 x_+^2(x_+^2-x_-^2)^2 \mp i \omega x^2x_+^3x_-^2(x_-^2-x_+^2) \nonumber \\&\quad \pm i \omega xx_+^2x_-^2(x_+^2x_-^2-x^4) + \frac{5}{4}x^8 - \frac{3}{2} x^6(x_+^2+x_-^2) + \frac{5}{2}x^4x_+^2x_-^2 \nonumber \\&\quad - \frac{1}{2} x^2 x_+^2 x_-^2 (x_+^2 + x_-^2) + \frac{1}{4} x_+^4x_-^4-m^2(x^2-x_+^2)(x^2-x_-^2)x_+^2x_-^2,\nonumber \\ S_s(x)&= x^2(x+x_+)^2(x^2-x_-^2)^2. \end{aligned}$$
(B15)

In the previous equations we define \(x_+= 1/r_+\) and \(x_-=1/r_-\).

As in Ref. [6] we propose that the solutions to Eqs. (B14) take the form

$$\begin{aligned} U_s=(x-x_+)^{\nu _s} \sum _{k=0}^{\infty } a_{k,s} (\omega )(x-x_+)^k, \end{aligned}$$
(B16)

but to fulfill the boundary condition of the QNMs near the event horizon we must take \(\nu _s=0\) [6]. Substituting these simplified forms of the functions \(U_s\) into Eq. (B14), we find that the coefficients \(a_{k,s}\) must satisfy the recurrence relations

$$\begin{aligned} a_{k,s}=-\frac{1}{k(k-1)S_{0,s}+k t_{0,s}} \sum _{n=0}^{k-1} a_{n,s} (n(n-1)S_{k-n,s}+n t_{k-n,s}+u_{k-n,s}), \end{aligned}$$
(B17)

where \( S_{0,s}= S_s (x_+)\), \( t_{0,s} = t_s(x_+)\), the coefficients \(u_{k,s}\) are given by

$$\begin{aligned} u_s(x)= \sum _{k=0}^{\infty } u_{k,s} (x-x_+)^k, \end{aligned}$$
(B18)

and similar definitions are valid for the coefficients \(S_{k,s}\) and \(t_{k,s}\).

At the asymptotic region, the boundary condition of the QNMs imposes that as \(x \rightarrow 0\) (\(r \rightarrow \infty \)) the functions \(U_s\) go to zero, that is,

$$\begin{aligned} U_s(x=0)=\sum _{k=0}^{\infty } a_{k,s} (\omega )(-x_+)^k=0 \end{aligned}$$
(B19)

and the QNFs of the Dirac field can be calculated by finding the roots of the previous equation when we replace the infinite sum by a finite sum [6].

As for the Klein-Gordon field moving in the DRBTZ black hole, the Horowitz-Hubeny method allows us to calculate the QNFs of the Dirac field when \(r_+ > 2r_-\). The reason is that the series (B16) has a radius of convergence as large as the distance to the nearest singular point. Since the radius of convergence must include the point \(x=0\), the distance from the expansion point at \(x_+\) to the other singularity at \(x_-\) must be larger than the distance between \(x_+\) and 0, that is, \(x_--x_+ > x_+\), or equivalently \(r_+ > 2r_-\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Dávila, K.A., López-Ortega, A. Quasinormal frequencies of the dimensionally reduced BTZ black hole. Gen Relativ Gravit 54, 73 (2022). https://doi.org/10.1007/s10714-022-02959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02959-8

Keywords

Navigation