Skip to main content

Advertisement

Log in

Noninvasive photoacoustic computed tomography/ultrasound imaging to identify high-risk atherosclerotic plaques

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Noninvasive detection of high-risk plaques is still challenging. In this study, we aimed to noninvasively assess αvβ3-integrin expression using a customed photoacoustic (PA) computed tomography (PACT)/ultrasound (US) system in atherosclerotic lesions of varying degrees of severity and to explore its potential value for detecting high-risk plaques.

Methods

We constructed αvβ3-integrin-targeted ultrasmall gold nanorods (AuNRs) with cyclo Arg-Gly-Asp (cRGD) and tested their properties. Employing C57BL/6 J (wild-type, WT) mice and apolipoprotein E gene knockout (ApoE−/−) mice fed either a chow diet or a high-fat/high-cholesterol diet (HFHCD), we established varying degrees of lesion severity. In vivo PACT/US imaging was performed to assess αvβ3-integrin expression in the 4 groups by cRGD-AuNRs. Further histopathologic examination was conducted to evaluate the plaque vulnerability indicators.

Results

The data showed that cRGD-AuNRs exhibited excellent photothermal conversion capacity, stability, targeting ability, and biocompatibility. The immunohistochemical results indicated that αvβ3-integrin was upregulated with increasing aggravation of the lesions. In vivo PACT/US imaging showed good consistency with αvβ3-integrin expression. Notably, ApoE−/− mice fed a HFHCD showed an abrupt PA intensity increase compared with the other groups. The histopathologic examination verified that the atherosclerotic plaques of ApoE−/− mice fed the HFHCD developed unstable phenotypes. Correlation analysis showed that PA intensity was mainly related to inflammation and angiogenesis among all of the indicators.

Conclusion

Our data indicated that αvβ3-integrin is an effective indicator of plaque instability, and noninvasive PACT/US molecular imaging assessment of αvβ3-integrin holds promise in detecting high-risk plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Fiolet ATL, Opstal TSJ, Mosterd A, Eikelboom JW, Jolly SS, Keech AC, et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur Heart J. 2021;42:2765–75. https://doi.org/10.1093/eurheartj/ehab115.

    Article  CAS  PubMed  Google Scholar 

  2. Campbell BCV, Khatri P. Stroke Lancet. 2020;396:129–42. https://doi.org/10.1016/S0140-6736(20)31179-X.

    Article  PubMed  Google Scholar 

  3. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36–44. https://doi.org/10.1161/01.cir.89.1.36.

    Article  PubMed  Google Scholar 

  4. Sugizaki Y, Otake H, Kawamori H, Toba T, Nagano Y, Tsukiyama Y, et al. Adding alirocumab to rosuvastatin helps reduce the vulnerability of thin-cap fibroatheroma: an ALTAIR trial report. JACC Cardiovasc Imaging. 2020;13:1452–4. https://doi.org/10.1016/j.jcmg.2020.01.021.

    Article  PubMed  Google Scholar 

  5. Kedhi E, Berta B, Roleder T, Hermanides RS, Fabris E, AJJ IJ, et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab433.

  6. Tomaniak M, Katagiri Y, Modolo R, de Silva R, Khamis RY, Bourantas CV, et al. Vulnerable plaques and patients: state-of-the-art. Eur Heart J. 2020;41:2997–3004. https://doi.org/10.1093/eurheartj/ehaa227.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. https://doi.org/10.1056/NEJMoa1002358.

    Article  CAS  PubMed  Google Scholar 

  8. Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961–79. https://doi.org/10.1016/j.jacc.2011.02.018.

    Article  PubMed  Google Scholar 

  9. Osborn EA, Kessinger CW, Tawakol A, Jaffer FA. Metabolic and molecular imaging of atherosclerosis and venous thromboembolism. J Nucl Med. 2017;58:871–7. https://doi.org/10.2967/jnumed.116.182873.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin alphavbeta3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7:178–87. https://doi.org/10.1016/j.jcmg.2013.12.003.

    Article  PubMed  Google Scholar 

  11. Vancraeynest D, Roelants V, Bouzin C, Hanin FX, Walrand S, Bol V, et al. alphaVbeta3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice. EJNMMI Res. 2016;6:29. https://doi.org/10.1186/s13550-016-0184-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4. https://doi.org/10.1161/01.CIR.0000093185.16083.95.

    Article  CAS  PubMed  Google Scholar 

  13. Daeichin V, Kooiman K, Skachkov I, Bosch JG, Theelen TL, Steiger K, et al. Quantification of endothelial alphavbeta3 expression with high-frequency ultrasound and targeted microbubbles: in vitro and in vivo studies. Ultrasound Med Biol. 2016;42:2283–93. https://doi.org/10.1016/j.ultrasmedbio.2016.05.005.

    Article  PubMed  Google Scholar 

  14. Zhang P, Li L, Lin L, Shi J, Wang LV. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light Sci Appl. 2019;8:36. https://doi.org/10.1038/s41377-019-0147-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Yang S, Ji X, Zhou Q, Xing D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J Am Coll Cardiol. 2014;64:385–90. https://doi.org/10.1016/j.jacc.2014.04.053.

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 2009;9:2212–7. https://doi.org/10.1021/nl801852e.

    Article  CAS  PubMed  Google Scholar 

  17. Lin L, Xie Z, Xu M, Wang Y, Li S, Yang N, et al. IVUS\IVPA hybrid intravascular molecular imaging of angiogenesis in atherosclerotic plaques via RGDfk peptide-targeted nanoprobes. Photoacoustics. 2021;22:100262. https://doi.org/10.1016/j.pacs.2021.100262.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Razansky D, Harlaar NJ, Hillebrands JL, Taruttis A, Herzog E, Zeebregts CJ, et al. Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol Imaging Biol. 2012;14:277–85. https://doi.org/10.1007/s11307-011-0502-6.

    Article  PubMed  Google Scholar 

  19. Johnson JL, Merrilees M, Shragge J, van Wijk K. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery. Photoacoustics. 2018;9:62–72. https://doi.org/10.1016/j.pacs.2018.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu C, Zhang Y, Li Z, Li C, Wang Q. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale. 2016;8:12531–9. https://doi.org/10.1039/c6nr00060f.

    Article  CAS  PubMed  Google Scholar 

  21. Ge X, Cui H, Kong J, Lu SY, Zhan R, Gao J, et al. A non-invasive nanoprobe for in vivo photoacoustic imaging of vulnerable atherosclerotic plaque. Adv Mater. 2020;32:e2000037. https://doi.org/10.1002/adma.202000037.

    Article  CAS  PubMed  Google Scholar 

  22. Xie Z, Yang Y, He Y, Shu C, Chen D, Zhang J, et al. In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics. 2020;10:4694–704. https://doi.org/10.7150/thno.41211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Gong X, Lin R, Liu F, Chen J, Wang Z, et al. Advances in imaging techniques and genetically encoded probes for photoacoustic imaging. Theranostics. 2016;6:2414–30. https://doi.org/10.7150/thno.15878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho S, Baik J, Managuli R, Kim C. 3D PHOVIS: 3D photoacoustic visualization studio. Photoacoustics. 2020;18:100168. https://doi.org/10.1016/j.pacs.2020.100168.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin LY, Keeler EG. Progress of MEMS scanning micromirrors for optical bio-imaging. Micromachines. 2015;6:1675–89.

    Article  Google Scholar 

  26. Wang D, Liang P, Samuelson S, Jia H, Ma J, Xie H. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors. Biomed Opt Express. 2013;4:2066–77. https://doi.org/10.1364/BOE.4.002066.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lu C, Xiong K, Ma Y, Zhang W, Cheng Z, Yang S. Electrothermal-MEMS-induced nonlinear distortion correction in photoacoustic laparoscopy. Opt Express. 2020;28:15300–13. https://doi.org/10.1364/OE.392493.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Wang D, Zhang Y, Chitgupi U, Geng J, Wang Y, et al. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics. 2016;6:688–97. https://doi.org/10.7150/thno.14555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62. https://doi.org/10.1126/science.1216210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantri Y, Jokerst JV. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano. 2020;14:9408–22. https://doi.org/10.1021/acsnano.0c05215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm. 2010;7:94–104. https://doi.org/10.1021/mp9001415.

    Article  CAS  PubMed  Google Scholar 

  32. Chen YS, Zhao Y, Yoon SJ, Gambhir SS, Emelianov S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol. 2019;14:465–72. https://doi.org/10.1038/s41565-019-0392-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med. 2002;8:27–34. https://doi.org/10.1038/nm0102-27.

    Article  CAS  PubMed  Google Scholar 

  34. Maile LA, Busby WH, Nichols TC, Bellinger DA, Merricks EP, Rowland M, et al. A monoclonal antibody against alphaVbeta3 integrin inhibits development of atherosclerotic lesions in diabetic pigs. Sci Transl Med. 2010;2:18ra1. https://doi.org/10.1126/scitranslmed.3000476.

  35. Jenkins WS, Vesey AT, Vickers A, Neale A, Moles C, Connell M, et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart. 2019;105:1868–75. https://doi.org/10.1136/heartjnl-2019-315103.

    Article  CAS  PubMed  Google Scholar 

  36. Ali MR, Snyder B, El-Sayed MA. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir. 2012;28:9807–15. https://doi.org/10.1021/la301387p.

    Article  CAS  PubMed  Google Scholar 

  37. Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13. https://doi.org/10.1126/scitranslmed.abb3945.

  38. Khoobchandani M, Katti KK, Karikachery AR, Thipe VC, Srisrimal D, Dhurvas Mohandoss DK, et al. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int J Nanomedicine. 2020;15:181–97. https://doi.org/10.2147/IJN.S219042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramirez-Nava G, Santos-Cuevas C, Ferro-Flores G, Ocampo-Garcia B, Chairez I, Gomez-Argumosa E, et al. Hybrid (2D/3D) Dosimetry of radiolabeled gold nanoparticles for sentinel lymph node detection in patients with breast cancer. Contrast Media Mol Imaging. 2020;2020:2728134. https://doi.org/10.1155/2020/2728134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kharlamov AN, Tyurnina AE, Veselova VS, Kovtun OP, Shur VY, Gabinsky JL. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015;7:8003–15. https://doi.org/10.1039/c5nr01050k.

    Article  CAS  PubMed  Google Scholar 

  41. Lankveld DP, Rayavarapu RG, Krystek P, Oomen AG, Verharen HW, van Leeuwen TG, et al. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (Lond). 2011;6:339–49. https://doi.org/10.2217/nnm.10.122.

    Article  CAS  Google Scholar 

  42. Zhu XM, Fang C, Jia H, Huang Y, Cheng CH, Ko CH, et al. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale. 2014;6:11462–72. https://doi.org/10.1039/c4nr03865g.

    Article  CAS  PubMed  Google Scholar 

  43. Panchatcharam M, Miriyala S, Yang F, Leitges M, Chrzanowska-Wodnicka M, Quilliam LA, et al. Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling. Int J Biochem Cell Biol. 2010;42:965–74. https://doi.org/10.1016/j.biocel.2010.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2019;31:e1805875. https://doi.org/10.1002/adma.201805875.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Jianping, Bin and Prof Longquan, Shao for their valuable advice on our manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81974266, No. 81470598, No.82122034).

Author information

Authors and Affiliations

Authors

Contributions

Xuewei Liu, Rongkang Gao, and Chiyun Chen designed the research studies, conducted the PACT/US experiments, AuNRs synthesis, analyzed data, and assisted with preparing the manuscript. Xiaobo Li, Chen Yu, and Yejia Chen performed histopathological experiments. Hongbin Liang and Min Xiao analyzes the offline data of PACT/US imaging. Lei Dai, Shifeng Qiu, and Xiaoyu Xin provide reagents. Liang Song provided conceptual and technical advice. Jiancheng Xiu, Chengbo Liu, and Jinbin Liu conceived the idea, designed research studies, conducted experiments, supervised the study, and prepared the manuscript. All authors contributed to the writing and review of the manuscript.

Corresponding authors

Correspondence to Jinbin Liu, Chengbo Liu or Jiancheng Xiu.

Ethics declarations

Conflicts of Interest

The authors declared no competing interests.

Ethics approval

The animal study protocols were approved by the Nanfang hospital animal ethic committee.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 33.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, R., Chen, C. et al. Noninvasive photoacoustic computed tomography/ultrasound imaging to identify high-risk atherosclerotic plaques. Eur J Nucl Med Mol Imaging 49, 4601–4615 (2022). https://doi.org/10.1007/s00259-022-05911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05911-9

Keywords

Navigation