Skip to main content
Log in

Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Following recent computational discovery of the Cs2InSbCl6 and Cs2InBiCl6 compounds, density functional theory screening of their fundamental physical properties is warranted to establish their potential as optoelectronic materials. Thus, in this paper, we report the results of detailed calculations of the structural, elastic, electronic, and optical properties of the Cs2InSbCl6 and Cs2InBiCl6 crystals using the full-potential augmented plane wave plus local orbitals method with the generalized gradient approximation (GGA) and Tran–Blaha modified Becke–Johnson potential (TB-mBJ) to model the exchange–correlation interactions. Calculations were performed both with and without including spin–orbit coupling effect. Ab initio molecular dynamics calculations show the thermal stability of the title compounds at 300 K. Predicted elastic constants show that the studied materials exhibit moderate resistant to external stress, strong elastic anisotropy, ductile nature, and mechanical stability. Cs2InSbCl6 and Cs2InBiCl6 are direct bandgap (Г–Г) semiconductors. Calculated optical properties reveal that the title compounds are characterized by strong absorption in a large energy window including the high-energy part of the sun visible spectrum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data concerning the bandgap values are given in Table 5.]

References

  1. A. Chiolerio, E. Garofalo, F. Mattiussi, M. Crepaldi, G. Fortunato, M. Iovieno, Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester. Appl. Energy 277, 115591–115599 (2020)

    Google Scholar 

  2. F. Hidayanti, E.K. Wati, H. Akbar, Energy harvesting system design for converting noise into electrical energy. Int. J. Adv. Sci. 29, 4791–4802 (2020)

    Google Scholar 

  3. G. Liu, T. Chen, J. Xu, G. Lic, K. Wang, Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8, 513–531 (2020)

    Google Scholar 

  4. M. Gholikhani, H. Roshani, S. Dessouky, A.T. Papagiannakis, A critical review of roadway energy harvesting technologies. Appl. Energy 261, 114388–114417 (2020)

    Google Scholar 

  5. A. Mohammadnia, A. Rezania, B.M. Ziapour, F. Sedaghati, L. Rosendahl, Hybrid energy harvesting system to maximize power generation from solar energy. Energy Convers. Manag. 205, 112352–112413 (2020)

    Google Scholar 

  6. P. Lin, J. Xie, Y. He, X. Lu, W. Li, J. Fang, S. Yan, L. Zhang, X. Sheng, Y. Chen, MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 206, 110229–110310 (2020)

    Google Scholar 

  7. H. Zhang, Y. Lu, W. Han, J. Zhu, Y. Zhang, W. Huang, Solar energy conversion and utilization: towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem Eng. J. 393, 124766–124813 (2020)

    Google Scholar 

  8. K. Xiao, J. Wen, Q. Han, R. Lin, Y. Gao, S. Gu, Y. Zang, Y. Nie, J. Zhu, J. Xu, H. Tan, Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5, 2819–2826 (2020)

    Google Scholar 

  9. W. Qarony, M.I. Hossain, V. Jovanov, A. Salleo, D. Knipp, Y. Hong Tsang, Influence of perovskite interface morphology on the photon management in perovskite/silicon tandem solar cells. ACS Appl. Mater. Interfaces 12, 15080–15086 (2020)

    Google Scholar 

  10. F. Qiao, Y. Xie, G. He, H. Chu, W. Liua, Z. Chena, Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale 12, 1269–1280 (2020)

    Google Scholar 

  11. A. Mavlonova, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246 (2020)

    ADS  Google Scholar 

  12. J. Chantana, Y. Kawano, T. Nishimura, Y. Kimoto, T. Kato, H. Sugimoto, T. Minemoto, Effect of alkali treatment on photovoltaic performances of Cu(In, Ga)(S, Se)2 solar cells and their absorber quality analyzed by Urbach energy and carrier recombination rates. ACS Appl. Energy Mater. 3, 1292–1297 (2020)

    Google Scholar 

  13. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016)

    Google Scholar 

  14. J. Shi, X. Xu, D. Li, Q. Meng, Interfaces in perovskite solar cells. Small 11, 2472–2486 (2015)

    Google Scholar 

  15. Z. Xiao, Y. Zhou, H. Hosono, T. Kamiya, Md.N.P. Padture, Bandgap optimization of perovskite semiconductors for photovoltaic applications. Chem. Eur. J. 24, 1–13 (2018)

    Google Scholar 

  16. K. Chondroudis, D.B. Mitzi, Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999)

    Google Scholar 

  17. Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015)

    ADS  Google Scholar 

  18. W. Liao, Y. Zhang, C. Hu, J. Mao, H. Ye, P. Li, S.D. Huang, R. Xiong, A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338–7347 (2015)

    ADS  Google Scholar 

  19. H. Ye, W. Liao, C. Hu, Y. Zhang, Y. You, J. Mao, P. Li, R. Xiong, Bandgap engineering of lead-halide perovskite-type ferroelectrics. Adv. Mater. 28, 2579–2586 (2016)

    Google Scholar 

  20. Y. Dang, C. Zhong, G. Zhang, D. Ju, L. Wang, S. Xia, H. Xia, X. Tao, Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X = Cl, Br). Chem. Mater. 28, 6968–6974 (2016)

    Google Scholar 

  21. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    ADS  Google Scholar 

  22. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Google Scholar 

  23. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Google Scholar 

  24. S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh Chem. 148, 795–826 (2017)

    Google Scholar 

  25. M. Lyu, J.H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7, 1602512–1602526 (2017)

    Google Scholar 

  26. S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta, S.G. Mhaisalkar, Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2, 837–845 (2017)

    Google Scholar 

  27. Z. Xiao, Y. Yan, Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 1, 1701136–1701220 (2017)

    Google Scholar 

  28. I.E. Castelli, J.M. García-Lastra, K.S. Thygesen, K.W. Jacobsen, Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514–081517 (2014)

    ADS  Google Scholar 

  29. M.R. Filip, F. Giustino, Computational screening of homovalent lead substitution in organic−inorganic halide perovskites. J. Phys. Chem. C 120, 166–173 (2016)

    Google Scholar 

  30. S. Korbel, M.A.L. Marques, S. Botti, Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157–3167 (2016)

    Google Scholar 

  31. M.S. Ozorio, W.X.C. Oliveira, J.F.R.V. Silveira, A.F. Nogueira, J.L.F. Da Silva, Novel zero-dimensional lead-free bismuth-based perovskites: from synthesis to structural and optoelectronic characterization. Mater. Adv (2020). https://doi.org/10.1039/d0ma00791a

    Article  Google Scholar 

  32. A. Jain, O. Voznyy, E.H. Sargent, High-throughput screening of lead-free perovskite-like materials for optoelectronic applications. J. Phys. Chem. C 121, 7183–7187 (2017)

    Google Scholar 

  33. X.Z. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017)

    Google Scholar 

  34. M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, F. Giustino, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr 6 from theory and experiment. J. Phys. Chem. Lett. 7, 2579–2585 (2016)

    Google Scholar 

  35. Z. Xiao, K.Z. Du, W. Meng, D.B. Mitzi, Y. Yan, Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew. Chem. 56, 12107–12111 (2017)

    Google Scholar 

  36. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)

    Google Scholar 

  37. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl)—new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016)

    Google Scholar 

  38. H.J. Feng, W. Deng, K. Yang, J. Huang, X.C. Zeng, Double perovskite Cs2BBiX6 (B = Ag, Cu; X = Br, Cl)/TiO2 heterojunction: an efficient Pb-free perovskite interface for charge extraction. J. Phys. Chem. C 121, 4471–4480 (2017)

    Google Scholar 

  39. F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M.A. Carpenter, P.D. Bristowe, A.K. Cheetham, The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3, 328–332 (2016)

    Google Scholar 

  40. E. Yang, X. Luo, Theoretical pressure-tuning bandgaps of double perovskites A2(BB’)X6 for photovoltaics. Sol. Energy 207, 165–172 (2020)

    ADS  Google Scholar 

  41. Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 4, 12025–12029 (2016)

    Google Scholar 

  42. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017)

    Google Scholar 

  43. A.H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-Parker, M.F. Toney, T.J. Savenije, J.B. Neaton, H.I. Karunadasa, Defect-induced band-edge reconstruction of a bismuth halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139, 5015–5018 (2017)

    Google Scholar 

  44. T.T. Tran, J.R. Panella, J.R. Chamorro, J.R. Morey, T.M. McQueen, Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 4: 688–693 (2017)

  45. X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger, Cu−In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017)

    Google Scholar 

  46. Z. Xiao, K.Z. Du, W. Meng, D.B. Mitzi, Y. Yan, Chemical origin of the stability difference between Cu(I)- and Ag(I)-based halide double perovskites. Angew. Chem. Int. Ed. 56, 12107–12111 (2017)

    Google Scholar 

  47. Z. Xiao, K.Z. Du, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc. 139, 6054–6057 (2017)

    Google Scholar 

  48. T. Nakajima, K. Sawada, Discovery of Pb-free perovskite solar cells via high-throughput simulation on the K computer. J. Phys. Chem. Lett. 8, 4826–4831 (2017)

    Google Scholar 

  49. M. Nabi, D.C. Gupta, Small-band gap halide double perovskite for optoelectronic properties. Int. J. Energy Res. 45, 1–13 (2020)

    Google Scholar 

  50. M. Kibbou, Z. Haman, I. Bouziani, N. Khossossi, Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, Cs2InGaX6 (X=Cl, Br, or I): emergent inorganic halide double perovskites with enhanced optoelectronic characteristics. Curr. Appl. Phys. 21, 50–57 (2021)

    ADS  Google Scholar 

  51. N. Rajeev Kumar, R. Radhakrishnan, Electronic, optical and mechanical properties of lead-free halide double perovskites using first-principles density functional theory. Mater. Lett. 227, 289–291 (2018)

    Google Scholar 

  52. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L. D. Marks, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology Institute of Materials Chemistry Getreidemarkt 9/165-TC A-1060 Vienna, Austria.

  53. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  54. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Lett. 102, 226401–226404 (2009)

    Google Scholar 

  55. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Google Scholar 

  56. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  57. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  58. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    ADS  MATH  Google Scholar 

  59. M.M. Pirvahshi, M. Izadifard, M.E. Ghazi, Structural and optoelectronic properties of the Cs2InMCl6 (M: Sb, Bi, Ag) double perovskite compounds: a first-principles study. Comput. Condens. Matter 31, e00669 (2022)

    Google Scholar 

  60. H. Li, S. Xu, M. Wang, Z. Chen, F. Ji, K. Cheng, Z. Gao, Z. Ding, W. Yang, Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J. Mater. Chem. A 8, 17987–17997 (2020)

    Google Scholar 

  61. H. Cho, J.S. Kim, Y.-H. Kim, T.-W. Lee, Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films. J. Inf. Display 19, 53–60 (2018)

    Google Scholar 

  62. M. Jamal, S.J. Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)

    Google Scholar 

  63. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)

    MATH  Google Scholar 

  64. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224114 (2014)

    ADS  Google Scholar 

  65. D.H. Chung, R. Buessem, The Elastic anisotropy of crystals. J. Appl. Phys. 38, 2010–2012 (1967)

    ADS  Google Scholar 

  66. C. Zener, Elasticity and an Elasticity of Metals (University of Chicago press, Chicago, 1948)

    MATH  Google Scholar 

  67. J.F. Nye, Properties of Crystals (Oxford University Press, Oxford, 1985)

    Google Scholar 

  68. X. Luan, H. Qin, F. Liu, Z. Dai, Y. Yi, Q. Li, The mechanical properties and elastic anisotropies of cubic Ni3Al from first-principles calculations. Crystals 8, 307–311 (2018)

    Google Scholar 

  69. R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349–354 (1952)

    ADS  Google Scholar 

  70. A. Bedjaoui, A. Bouhemadou, S. Bin-Omran, Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation. High Press. Res. 36, 198–219 (2016)

    ADS  Google Scholar 

  71. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Google Scholar 

  72. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Tech. 8, 345–349 (1992)

    Google Scholar 

  73. S.K. Saha, G. Dutta, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe. Phys. Rev. B 94, 125209–125218 (2016)

    ADS  Google Scholar 

  74. O.L. Anderson, "A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    ADS  Google Scholar 

  75. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented plane wave method. Computer Phys. Commun. 175, 1–14 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

The author S. Bin Omran acknowledges the Researchers Supporting Project number RSP-2021/82, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SA: conceptualization, formal analysis and investigation, and writing—original draft preparation. AB: conceptualization, formal analysis and investigation, and writing—review and editing. MC: formal analysis and investigation. AG: methodology and resources. SB-O: funding acquisition. RK: supervision. YA-D: resources. WY: formal analysis and investigation. HL: formal analysis and investigation.

Corresponding author

Correspondence to A. Bouhemadou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnujaim, S., Bouhemadou, A., Chegaar, M. et al. Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur. Phys. J. B 95, 114 (2022). https://doi.org/10.1140/epjb/s10051-022-00381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00381-2

Navigation