Skip to main content
Log in

Reactive distillation for methanol synthesis: Simulation-based design methodology

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simulation-based design methodology for configuring a reactive distillation (RD) column for methanol synthesis is presented in this work. Unlike other processes using RD, all the reactants involved in methanol synthesis are gaseous and, therefore, the conventional methods used for the design of RD columns cannot be used. The simulation-based design algorithm also gives better insights into the process. RD for methanol synthesis requires an inert solvent and the column configuration has side coolers on the stages to remove the heat of reaction. The developed algorithm aims to maximize the methanol production, while minimizing the solvent requirement and the number of side coolers. The methodology has been demonstrated for three different feed syngas compositions. It is observed that the performance of RD is either at par with, or superior to, the conventional process for the studied cases. A multi-parametric sensitivity analysis shows that the solution obtained using this design algorithm is within 0.3% of the local optimum. The effect of solvent flowrate on the column sizing and economics and the possibility of multiple steady-states is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(MI)NLP:

(mixed integer) non linear programming

PBR:

packed bed reactor

RD:

Reactive distillation

VLE:

vapor liquid equilibrium

References

  1. G. A. Olah, A. Goeppert and G. K. Surya Prakash, Beyond oil and gas: The methanol economy, Wiley-VCH, Weinheim, Germany (2006).

    Google Scholar 

  2. M. Alvarado, The changing face of the global methanol industry (2016).

  3. IRENA and Methanol Institute, Innovation Outlook: Renewable Methanol, Abu Dhabi (2021).

  4. Air Liquide, Lurgi MegaMethanol™ (2021) <https://www.engineering-airliquide.com/lurgi-megamethanol>.

  5. M. R. Rahimpour and S. Ghader, Chem. Eng. Technol., 26, 902 (2003).

    Article  CAS  Google Scholar 

  6. A. Arora, S. S. Iyer, I. Bajaj and M. M. F. Hasan, Ind. Eng. Chem. Res., 57, 14143 (2018).

    Article  CAS  Google Scholar 

  7. M. M. Sharma and S. M. Mahajani, in Reactive distillation: Status and future directions, K. Sundmacher and A. Kienle Eds., Weinheim, FRG, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).

  8. F. J. Novita, H.-Y. Lee and M. Lee, Korean J. Chem. Eng., 35, 926 (2018).

    Article  CAS  Google Scholar 

  9. S. Y. Kim, D. M. Kim, and B. Lee, Korean J. Chem. Eng., 34, 1310 (2017).

    Article  CAS  Google Scholar 

  10. S. P. Nemphos, W. A. Groten and J. R. Adams, US Patent 5,886,055 (1999).

  11. S. Ghosh and S. Seethamraju, Process Integr. Optim. Sustain., 4, 325 (2020).

    Article  Google Scholar 

  12. S. Ghosh and S. Seethamraju, Chem. Eng. Process. — Process Intensif., 145, 107673 (2019).

    Article  CAS  Google Scholar 

  13. S. Ghosh and S. Seethamraju, Process Integr. Optim. Sustain., 5, 827 (2021).

    Article  Google Scholar 

  14. S. Ghosh and S. Srinivas, Process Integr. Optim. Sustain., 6, 527 (2022).

    Article  Google Scholar 

  15. C. P. Almeida-Rivera, P. L. J. Swinkels and J. Grievink, Comput. Chem. Eng., 28, 1997 (2004).

    Article  CAS  Google Scholar 

  16. D. Barbosa and M. F. Doherty, Chem. Eng. Sci., 43, 1523 (1988).

    Article  CAS  Google Scholar 

  17. G. Buzad and M. F. Doherty, Chem. Eng. Sci., 49, 1947 (1994).

    Article  CAS  Google Scholar 

  18. M. J. Okasinski and M. F. Doherty, Ind. Eng. Chem. Res., 37, 2821 (1998).

    Article  CAS  Google Scholar 

  19. H. Li, Y. Meng, X. Li and X. Gao, Chem. Eng. Res. Des., 111, 479 (2016).

    Article  CAS  Google Scholar 

  20. S. Giessler, R.Y. Danilov, R.Y. Pisarenko, L. A. Serafimov, S. Hasebe and I. Hashimoto, Ind. Eng. Chem. Res., 37, 4375 (1998).

    Article  CAS  Google Scholar 

  21. A. Nisoli, M. F. Malone and M. F. Doherty, AIChE J., 43, 374 (1997).

    Article  CAS  Google Scholar 

  22. J. W. Lee, S. Hauan and A. W. Westerberg, AIChE J., 46, 1218 (2000).

    Article  CAS  Google Scholar 

  23. A. R. Ciric and D. Gu, AIChE J., 40, 1479 (1994).

    Article  CAS  Google Scholar 

  24. J. Stichlmair and T. Frey, Ind. Eng. Chem. Res., 40, 5978 (2001).

    Article  CAS  Google Scholar 

  25. M. F. Malone and M. F. Doherty, Ind. Eng. Chem. Res., 39, 3953 (2000).

    Article  CAS  Google Scholar 

  26. S. Srinivas, S. M. Mahajani and R. K. Malik, Ind. Eng. Chem. Res., 49, 9673 (2010).

    Article  CAS  Google Scholar 

  27. Aspen Plus® v8.4, 2013, AspenTech Inc., Burlington, MA, USA (2013).

  28. R. Taylor and R. Krishna, Chem. Eng. Sci., 55, 5183 (2000).

    Article  CAS  Google Scholar 

  29. G. P. van der Laan, A. A. C. M. Beenackers, B. Ding and J. C. Strikwerda, Catal. Today, 48, 93 (1999).

    Article  Google Scholar 

  30. K. Kobl, S. Thomas, Y. Zimmermann, K. Parkhomenko and A. C. Roger, Catal. Today, 270, 31 (2016).

    Article  CAS  Google Scholar 

  31. C. Krishnan, J. R. Elliott and J. M. Berty, Ind. Eng. Chem. Res., 30, 1413 (1991).

    Article  CAS  Google Scholar 

  32. G. H. Graaf, H. J. Smit, E. J. Stamhuis and A. A. C. M. Beenackers, J. Chem. Eng. Data, 37, 146 (1992).

    Article  CAS  Google Scholar 

  33. S. Ghosh and S. Seethamraju, Chem. Eng. Process. — Process Intensif., 145, 107673 (2019).

    Article  CAS  Google Scholar 

  34. C. Higman and M. van der Burgt, Gasification, Gulf Professional Publishing (2008).

  35. W. L. Luyben, Ind. Eng. Chem. Res., 49, 6150 (2010).

    Article  CAS  Google Scholar 

  36. K. M. Vanden Bussche and G. F. Froment, J. Catal., 10, 1 (1996).

    Article  Google Scholar 

  37. G. Bozzano and F. Manenti, Prog. Energy Combust. Sci., 56, 71 (2016).

    Article  Google Scholar 

  38. R. Jacobs and R. Krishna, Ind. Eng. Chem. Res., 32, 1706 (1993).

    Article  CAS  Google Scholar 

  39. K.-D. Mohl, A. Kienle and E.-D. Gilles, Chem. Eng. Technol., 21, 133 (1998).

    Article  CAS  Google Scholar 

  40. P. Rapmund, K. Sundmacher and U. Hoffmann, Chem. Eng. Technol., 21, 136 (1998).

    Article  CAS  Google Scholar 

  41. F. Chen, R. S. Huss, M. F. Doherty and M. F. Malone, Comput. Chem. Eng., 26, 81 (2002).

    Article  Google Scholar 

  42. A. Kienle and W. Marquardt, in Reactive distillation: Status and future directions, K. Sundmacher and A. Kienle Eds., Weinheim, FRG, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).

  43. S. Srinivas, R. K. Malik and S. M. Mahajani, Ind. Eng. Chem. Res., 47, 889 (2008).

    Article  CAS  Google Scholar 

  44. M. G. Sneesby, M. O. Tadé and T. N. Smith, Dev. Chem. Eng. Miner. Process., 7, 41 (2008).

    Article  Google Scholar 

  45. P. Schühle, S. Reichenberger, G. Marzun and J. Albert, Chemie Ing. Tech., 93, 585 (2020).

    Article  Google Scholar 

  46. H. Nieminen, G. Givirovskiy, A. Laari and T. Koiranen, J. CO2Util., 24, 180 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Industrial Research and Consultancy Centre, Indian Institute of Technology Bombay and Ministry of Human Resource Development, India for providing the scholarship to SG during his graduate studentship. We gratefully acknowledge Aspen Tech for providing the software used in this work. We also thank the anonymous reviewers whose comments have helped us in improving the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seethamraju Srinivas.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Srinivas, S. Reactive distillation for methanol synthesis: Simulation-based design methodology. Korean J. Chem. Eng. 39, 2291–2306 (2022). https://doi.org/10.1007/s11814-022-1197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1197-x

Keywords

Navigation