Skip to main content

Advertisement

Log in

The modelling of biosorption for rapid removal of organic matter with activated sludge biomass from real industrial effluents

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biosorption is becoming increasingly important for the treatment of pollutants due to its cost-effectiveness, environmental friendliness and efficiency. For a more sustainable environment, more studies need to focus on the application of real industrial effluents. Increasing the initial concentration of activated sludge increases the specific surface area of the sludge, which allows for greater sorption of sorbates. The optimal initial concentration of activated sludge in the process of biosorption of pollutants from pharmaceutical effluent was 5.12±0.13 g/L. The biosorption process can be described by the Temkin model, where the estimated values of BT and AT ranged from 29.11 to 76.08 and from 1.10 to 1.48 L/g, respectively. The overall efficiency of the biosorption process ranged from 9.5 to 40.2%. The removed toxicity averaged 41.1±7.88% for all experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, J. Meng, M. Zhang, S. Chen, B. He, H. Zhao, Q. Li, S. Zhang and T. Wang, Environ. Int., 131, 104982 (2019).

    Article  CAS  Google Scholar 

  2. S. Ali, A. Paul Peter, K. W. Chew, H. S. H. Munawaroh and P. L. Show, Bioresour. Technol., 337, 125461 (2021).

    Article  CAS  Google Scholar 

  3. X. Zhang, X. Li, Q. Zhang, Q. Peng, W. Zhang and F. Gao, Bioresour. Technol., 153, 160 (2014).

    Article  CAS  Google Scholar 

  4. M. Bilal, M. Adeel, T. Rasheed, Y. Zhao and H. M. N. Iqbal, Environ. Int., 124, 336 (2019).

    Article  CAS  Google Scholar 

  5. M. Doble and A. Kumar, Biotreatment of industrial effluents, Elsevier, London (2005).

    Google Scholar 

  6. V. V. Ranade and V. M. Bhandari, Industrial wastewater treatment, recycling, and reuse, Elsevier, London (2014).

    Book  Google Scholar 

  7. C. Gadipelly, A. Pérez-González, G. D. Yadav, I. Ortiz, R. Ibáñez, V. K. Rathod and K. V. Marathe, Ind. Eng. Chem. Res., 53, 11571 (2014).

    Article  CAS  Google Scholar 

  8. J. Derco and B. Vrana, in Biosorption, J. Derco Ed., IntechOpen (2018).

  9. D. K. Kanaujiya, T. Paul, A. Sinharoy and K. Pakshirajan, Curr. Pollut. Reports, 5, 112 (2019).

    Article  Google Scholar 

  10. C. P. Lim, J. L. Neo, E. Mar’atusalihat, Y. Zhou and W. J. Ng, Biochem. Eng. J., 114, 119 (2016).

    Article  CAS  Google Scholar 

  11. B. Banihashemi and R. L. Droste, Sci. Total Environ., 487, 813 (2014).

    Article  CAS  Google Scholar 

  12. R. B. P. Marcelino, L. N. Andrade, M. C. V. M. Starling, C. C. Amorim, M. L. T. Barbosa, R. P. Lopes, B. G. Reis and M. M. D. Leão, Brazilian J. Chem. Eng., 33, 445 (2016).

    Article  CAS  Google Scholar 

  13. APHA, Standard Methods for the Examination of Water and Wastewater, Washington (2012).

  14. ISO 11348-3:2007, Water quality (2007).

  15. R. Idel-Aouad, M. Valiente, C. Gutiérrez-Bouzán, M. Vilaseca, A. Yaacoubi, B. Tanouti and M. López-Mesas, J. Anal. Methods Chem., 2015, 945489 (2015).

    Article  Google Scholar 

  16. K. L. Yu, X. J. Lee, H. C. Ong, W. H. Chen, J. S. Chang, C. S. Lin, P. L. Show and T. C. Ling, Environ. Pollut., 272, 115986 (2021).

    Article  CAS  Google Scholar 

  17. B. A. Ezeonuegbu, D. A. Machido, C. M. Z. Whong, W. S. Japhet, A. Alexiou, S. T. Elazab, N. Qusty, C. A. Yaro and G. E. S. Batiha, Biotechnol. Reports, 30, e00614 (2021).

    Article  CAS  Google Scholar 

  18. M. A. Al-Ghouti and D. A. Da’ana, J. Hazard. Mater., 393, 122383 (2020).

    Article  CAS  Google Scholar 

  19. N. Ayawei, A. N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017).

    Article  Google Scholar 

  20. A. O. Dada, J. O. Ojediran and A. P. Olalekan, Adv. Phys. Chem., 2013, 842425 (2013).

    Article  Google Scholar 

  21. M. T. Amin, A. A. Alazba and M. Shafiq, Sustainability, 7, 15302 (2015).

    Article  CAS  Google Scholar 

  22. F. Mansour, M. Al-Hindi, R. Yahfoufi, G. M. Ayoub and M. N. Ahmad, Rev. Environ. Sci. Biotechnol., 17, 109 (2018).

    Article  CAS  Google Scholar 

  23. Y. Zhou, L. Zhang and Z. Cheng, J. Mol. Liq., 212, 739 (2015).

    Article  CAS  Google Scholar 

  24. I. Ali, M. Asim and T. A. Khan, J. Environ. Manage., 113, 170 (2012).

    Article  CAS  Google Scholar 

  25. Z. Kılıç, O. Atakol, S. Aras, D. Cansaran-Duman, P. Çelikkol and E. Emregul, J. Air Waste Manage. Assoc., 64, 115 (2014).

    Article  Google Scholar 

  26. W. J. DeCoursey, Statistics and probability for engineering applications, Elsevier Science, Newnes (2003).

    Google Scholar 

  27. N. T. R. N. Kumara, N. Hamdan, M. I. Petra, K. U. Tennakoon and P. Ekanayake, J. Chem., 2014, 468975 (2014).

    Article  Google Scholar 

  28. S. Savci, Asian J. Chem., 25, 3175 (2013).

    Article  CAS  Google Scholar 

  29. R. N. Coimbra, V. Calisto, C. I. A. Ferreira, V. I. Esteves, and M. Otero, Arab. J. Chem., 12, 3611 (2019).

    Article  CAS  Google Scholar 

  30. Z. Aksu, Process Biochem., 40, 997 (2005).

    Article  CAS  Google Scholar 

  31. S. F. Yang, C. F. Lin, A. Yu-Chen Lin and P. K. Andy Hong, Water Res., 45, 3389 (2011).

    Article  CAS  Google Scholar 

  32. M. Vuković Domanovac, M. Šabić Runjavec and E. Meštrović, J. Chem. Technol. Biotechnol., 94, 2721 (2019).

    Article  Google Scholar 

  33. O. Lefebvre, X. Shi, C. H. Wu and H. Y. Ng, Water Sci. Technol., 69, 855 (2014).

    Article  CAS  Google Scholar 

  34. Y. Yu, B. Wu, L. Jiang, X.-X. Zhang, H.-Q. Ren and M. Li, Sci. Rep., 9, 3751 (2019).

    Article  Google Scholar 

  35. A. Mostafaie, D. N. Cardoso, M. Kamali and S. Loureiro, Toxics, 9, 176 (2021).

    Article  CAS  Google Scholar 

  36. B. Cēbere, E. Faltiņa, N. Zelčāns and D. Kalniņa, Environ. Clim. Technol., 3, 41 (2009).

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Department of Industrial Ecology, Faculty of Chemical Engineering and Technology, University of Zagreb during the collaboration with the company PLIVA Hrvatska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Vuković Domanovac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domanovac, M.V., Runjavec, M.Š. & Meštrović, E. The modelling of biosorption for rapid removal of organic matter with activated sludge biomass from real industrial effluents. Korean J. Chem. Eng. 39, 3361–3368 (2022). https://doi.org/10.1007/s11814-022-1189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1189-x

Keywords

Navigation