Skip to main content
Log in

Performance comparisons between inverted and conventional avalanche photodiodes for larger capacity applications

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, two types of avalanche photodiode (APD) are compared, namely, a P-down APD using an inverted structure and a P-up APD using a conventional structure. Comparison between those two types of APD was made and differences between them were pointed out. We find that the inverted APD structure can prevent undesirable edge breakdown and improve high-speed performance. A maximum 3-dB bandwidth of 23 GHz and a gain–bandwidth product of 276 GHz are obtained for the P-down APD. For larger capacity applications, the P-down APD can play a greater role than the P-up APD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakajima, F., Nada, M., Yoshimatsu, T.: High-speed avalanche photodiode and high-sensitivity receiver optical subassembly for 100-gb/s ethernet. J. Lightwave Technol. 34(2), 243–248 (2016). https://doi.org/10.1109/JLT.2015.2464710

    Article  ADS  Google Scholar 

  2. Nada, M., Yoshimatsu, T., Muramoto, Y., Yokoyama, H., Matsuzaki, H.: Design and performance of high-speed avalanche photodiodes for 100-gb/s systems and beyond. J. Lightwave Technol. 33(5), 984–990 (2015). https://doi.org/10.1109/JLT.2014.2377034

    Article  ADS  Google Scholar 

  3. Nada, M., Yamada, Y., Matsuzaki, H.: Responsivity-bandwidth limit of avalanche photodiodes: toward future ethernet systems. IEEE J. Sel. Top. Quantum Electron. 24(2), 1–11 (2018). https://doi.org/10.1109/JSTQE.2017.2754361

    Article  Google Scholar 

  4. Nada, M., Yamada, Y., Matsuzaki, H.: A high-linearity avalanche photodiodes with a dual-carrier injection structure. IEEE Photon. Technol. Lett. 29(21), 1828–1831 (2017). https://doi.org/10.1109/LPT.2017.2753262

    Article  ADS  Google Scholar 

  5. Campbell, J.C.: Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol. 25(1), 109–121 (2007). https://doi.org/10.1109/JLT.2006.888481

    Article  ADS  MathSciNet  Google Scholar 

  6. Nada, M., Muramoto, Y., Yokoyama, H., Shigekawa, N., Ishibashi, T., Kodama, S.: Inverted InAlAs/InGaAs avalanche photodiode with low-high-low electric field profile. Jpn. J. Appl. Phys. 51(2S), 165–176 (2012). https://doi.org/10.1143/JJAP.51.02BG03

    Article  Google Scholar 

  7. Nada, M., Muramoto, Y., Yokoyama, H., Matsuzaki, H.: High-speed high-power-tolerant avalanche photodiode for 100-gb/s applications. In: 2014 IEEE Photonics Conference, pp. 172–173 (2014). https://doi.org/10.1109/IPCon.2014.6995303. IEEE

  8. Nada, M., Yoshimatsu, T., Nakajima, F., Sano, K., Matsuzaki, H.: A 42-ghz bandwidth avalanche photodiodes based on III–V compounds for 106-gbit/s pam4 applications. J. Lightwave Technol. 37(2), 260–265 (2019). https://doi.org/10.1109/JLT.2018.2871508

    Article  ADS  Google Scholar 

  9. Campbell, J.C.: Recent advances in avalanche photodiodes. J. Lightwave Technol. 34(2), 278–285 (2016). https://doi.org/10.1109/JLT.2015.2453092

    Article  ADS  Google Scholar 

  10. Nada, M., Muramoto, Y., Yokoyama, H., Ishibashi, T., Matsuzaki, H.: Triple-mesa avalanche photodiode with inverted p-down structure for reliability and stability. J. Lightwave Technol. 32(8), 1543–1548 (2014). https://doi.org/10.1109/JLT.2014.2308512

    Article  ADS  Google Scholar 

  11. Nakajima, F., Nada, M., Yoshimatsu, T.: High-speed avalanche photodiode for 100-gbit/s ethernet. In: 2015 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2015). https://doi.org/10.1364/OFC.2015.M3B.5

  12. Xiao, Y.G., Li, Z.Q., Li, Z.M.S.: Modeling of avalanche photodiodes by crosslight APSYS. In: Longshore, R.E., Sood, A. (eds.) Infrared and Photoelectronic Imagers and Detector Devices II, vol. 6294, pp. 281–288. SPIE (2006). https://doi.org/10.1117/12.681189 (International Society for Optics and Photonics)

  13. Xiao, Y.G., Li, Z.Q., Li, Z.M.S.: Modeling of resonant cavity enhanced separate absorption charge and multiplication avalanche photodiodes by crosslight apsys. In: Dereniak, E.L., Hartke, J.P., Longshore, R.E., Sood, A.K. (eds.) Infrared Systems and Photoelectronic Technology II, vol. 6660, pp. 279–286. SPIE (2007). https://doi.org/10.1117/12.732682 (International Society for Optics and Photonics)

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (2018YFB2200803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Duan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Li, K., Liu, H. et al. Performance comparisons between inverted and conventional avalanche photodiodes for larger capacity applications. Opt Rev 29, 305–309 (2022). https://doi.org/10.1007/s10043-022-00746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00746-z

Keywords

Navigation