Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging landscape of spatial profiling technologies

Abstract

Improved scale, multiplexing and resolution are establishing spatial nucleic acid and protein profiling methods as a major pillar for cellular atlas building of complex samples, from tissues to full organisms. Emerging methods yield omics measurements at resolutions covering the nano- to microscale, enabling the charting of cellular heterogeneity, complex tissue architectures and dynamic changes during development and disease. We present an overview of the developing landscape of in situ spatial genome, transcriptome and proteome technologies, exemplify their impact on cell biology and translational research, and discuss current challenges for their community-wide adoption. Among many transformative applications, we envision that spatial methods will map entire organs and enable next-generation pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrative examples of spatial profiling measurements.
Fig. 2: Spatial indexing strategies.
Fig. 3: An overview of imaging-based spatial transcriptomics methods and their performance.
Fig. 4: An overview of imaging-based spatial proteomics methods.

Similar content being viewed by others

References

  1. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Asp, M. et al. Spatial detection of fetal marker genes expressed at low level in adult human heart tissue. Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 

  7. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2020.12.08.411686 (2020).

    Article  Google Scholar 

  8. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. Cancer Res. 78, 5970–5979 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Pascual, G. et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599, 485–490 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). The first publication to introduce the concept of spatial indexing with subsequent transcriptome readout using NGS.

    Article  PubMed  Google Scholar 

  15. Salmén, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018).

    Article  PubMed  Google Scholar 

  16. Kvastad, L. et al. The spatial RNA integrity number assay for in situ evaluation of transcriptome quality. Commun. Biol. 4, 57 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.252296 (2022).

    Article  Google Scholar 

  18. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Villacampa, E. G. et al. Genome-wide spatial expression profiling in FFPE tissues. Cell Genomics 1, 100065 (2021).

    Article  Google Scholar 

  20. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019). This study presents the first spatial indexing methods with capture units at subcellular scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022). This paper reports high-resolution spatial indexing methods with nanometre-scale transcriptome capture units.

    Article  CAS  PubMed  Google Scholar 

  26. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, M. et al. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev. Cell 57, 1271–1283 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, C. et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev. Cell 57, 1284–1298 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Xia, K. et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299–1310 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu, X. et al. Continuous polony gels for tissue mapping with high resolution and RNA capture efficiency. Preprint at bioRxiv https://doi.org/10.1101/2021.03.17.435795 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27, e34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, Y. et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021). This publication describes a spatial method using combinatorial indexing to combine spatial indexing with subsequent single-cell sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Qiu, S. et al. Single-neuron RNA-seq: technical feasibility and reproducibility. Front. Genet. 3, 124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Subkhankulova, T., Yano, K., Robinson, H. P. C. & Livesey, F. J. Grouping and classifying electrophysiologically-defined classes of neocortical neurons by single cell, whole-genome expression profiling. Front. Mol. Neurosci. 3, 10 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Lovatt, D. et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11, 190–196 (2014). This paper introduces the concept of targeted labelling tissue regions of interest with subsequent next-generation transcriptome sequencing readout.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, K. H. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat. Methods 17, 833–843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deiters, A. Light activation as a method of regulating and studying gene expression. Curr. Opin. Chem. Biol. 13, 678–686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khan, M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 184, 5932–5949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). This study introduces MERFISH and demonstrates that multiplexed FISH-based methods could multiplex hundreds to a thousand genes with high detection efficiency.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019). Together with Eng et al., this paper shows that multiplexed FISH-based methods can be used to profile ~10,000 genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019). Together with Xia et al., this paper shows that multiplexed FISH-based methods can be used to profile ~10,000 genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Emanuel, G., Moffitt, J. R. & Zhuang, X. High-throughput, image-based screening of pooled genetic-variant libraries. Nat. Methods 14, 1159–1162 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, C., Lu, T., Emanuel, G., Babcock, H. P. & Zhuang, X. Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization. Proc. Natl Acad. Sci. USA 116, 10842–10851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuang, X. Spatially resolved single-cell genomics and transcriptomics by imaging. Nat. Methods 18, 18–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Close, J. L., Long, B. R. & Zeng, H. Spatially resolved transcriptomics in neuroscience. Nat. Methods 18, 23–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013). This study introduces the use of padlock probes and rolling circle amplification for targeted in situ sequencing.

    Article  CAS  PubMed  Google Scholar 

  64. Banér, J., Nilsson, M., Mendel-Hartvig, M. & Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Daubendiek, S. L. & Kool, E. T. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles. Nat. Biotechnol. 15, 273–277 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, D. Y., Brandwein, M., Hsuih, T. C. & Li, H. Amplification of target-specific, ligation-dependent circular probe. Gene 211, 277–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Partel, G. et al. Automated identification of the mouse brain’s spatial compartments from in situ sequencing data. BMC Biol. 18, 144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Floriddia, E. M. et al. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carow, B. et al. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10, 1823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Svedlund, J. et al. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 48, 212–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lundin, E. et al. Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biol. 18, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaghlool, A. et al. Expression profiling and in situ screening of circular RNAs in human tissues. Sci. Rep. 8, 16953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu, S. et al. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res. 49, e58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, aat5691 (2018). This reference introduces starMAP and the use of SNAIL probes to generate RCPs without cDNA synthesis.

    Article  Google Scholar 

  80. He, Y. et al. ClusterMap for multi-scale clustering analysis of spatial gene expression. Nat. Commun. 12, 5909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021). This study uses expansion microscopy to improve the efficiency and resolution of targeted and untargeted in situ sequencing with the technique ExSeq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mignardi, M. et al. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ. Nucleic Acids Res. 43, e151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen, X., Sun, Y.-C., Church, G. M., Lee, J. H. & Zador, A. M. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 46, e22 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014). This reference introduces FISSEQ, an untargeted in situ sequencing method.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jakt, L. M., Moriwaki, S. & Nishikawa, S. A continuum of transcriptional identities visualized by combinatorial fluorescent in situ hybridization. Development 140, 216–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Levesque, M. J. & Raj, A. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat. Methods 10, 246–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014). This paper introduces the core concept behind seqFISH and demonstrates the profiling of 12 RNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moffitt, J. R. & Zhuang, X. RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). Methods Enzymol. 572, 1–49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eng, C.-H. L., Shah, S., Thomassie, J. & Cai, L. Profiling the transcriptome with RNA SPOTs. Nat. Methods 14, 1153–1155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 4847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9, 7721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Foreman, R. & Wollman, R. Mammalian gene expression variability is explained by underlying cell state. Mol. Syst. Biol. 16, e9146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale Imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, aau5324 (2018). This study illustrates the potential for image-based transcriptomic methods to profile large tissue areas and numbers of cells by profiling 1.1 million cells.

    Article  Google Scholar 

  110. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 5686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, R. et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat. Neurosci. 24, 1757–1771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, Y. et al. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov. 7, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, M. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, W. et al. Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment in early T cell development. Cell Syst. 9, 321–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lignell, A., Kerosuo, L., Streichan, S. J., Cai, L. & Bronner, M. E. Identification of a neural crest stem cell niche by spatial genomic analysis. Nat. Commun. 8, 1830 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    Article  CAS  Google Scholar 

  121. Takei, Y. et al. Single-cell nuclear architecture across cell types in the mouse brain. Science 374, 586–594 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, D. W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Dirks, R. M. & Pierce, N. A. From the cover: triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kishi, J. Y. et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16, 533–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rouhanifard, S. H. et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. 37, 84–89 (2018).

    Article  Google Scholar 

  127. Goh, J. J. L. et al. Highly specific multiplexed RNA imaging in tissues with split-FISH. Nat. Methods 17, 689–693 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Sountoulidis, A. et al. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol. 18, e3000675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nagendran, M., Riordan, D. P., Harbury, P. B. & Desai, T. J. Automated cell-type classification in intact tissues by single-cell molecular profiling. eLife 7, e30510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Langseth, C. M. et al. Comprehensive in situ mapping of human cortical transcriptomic cell types. Commun. Biol. 4, 998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article  PubMed  Google Scholar 

  132. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coskun, A. F. & Cai, L. Dense transcript profiling in single cells by image correlation decoding. Nat. Methods 13, 657–660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cleary, B. et al. Compressed sensing for highly efficient imaging transcriptomics. Nat. Biotechnol. 39, 936–942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014). This paper introduces MIBI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass. Spectrom. 32, 872–894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Coons, A. H., Creech, H. J. & Jones, R. N. Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. Med. 47, 200–202 (1941).

    Article  CAS  Google Scholar 

  146. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40, 135–153 (2020).

    Article  Google Scholar 

  148. Bodenmiller, B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2, 225–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Taube, J. M. et al. The society for immunotherapy of cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J. Immunother. Cancer 8, e000155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Du, Z. et al. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900–2930 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Uhlen, M. et al. A proposal for validation of antibodies. Nat. Methods 13, 823–827 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Park, Y.-G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).

    Article  CAS  Google Scholar 

  157. Richardson, D. S. et al. Tissue clearing. Nat. Rev. Methods Prim. 1, 84 (2021).

    Article  CAS  Google Scholar 

  158. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018). This reference presents a highly multiplexed use of indirect IF (4i) to study subcellular organization, demonstrating that 40 proteins can be visualized in the same cells.

    Article  PubMed  Google Scholar 

  163. Wahle, P. et al. Multimodal spatiotemporal phenotyping of human organoid development. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484396 (2022).

    Article  Google Scholar 

  164. Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Wählby, C., Erlandsson, F., Bengtsson, E. & Zetterberg, A. Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry 47, 32–41 (2002).

    Article  PubMed  Google Scholar 

  166. Wang, Y. et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 17, 6131–6139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 183, 838 (2020). This reference demonstrates 56-plex protein CODEX imaging across cohorts of tissue samples in a tissue microarray format. This represents the more commonly used implementation of CODEX based on hybridization–dehybridization.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019). This paper demonstrates how DNA concatemers can be used for signal amplification without enzymatic reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zubarev, R. A. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics 13, 723–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15, 275–278 (2018).

    Article  PubMed  Google Scholar 

  172. Wang, Y. et al. Multiplexed in situ protein imaging using DNA-barcoded antibodies with extended hybridization chain reactions. Preprint at bioRxiv https://doi.org/10.1101/274456 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014). This paper introduces multiplexed imaging by mass cytometry and demonstrates the quantitative advantage and higher dynamic range of mass tag over fluorescence-based approaches.

    Article  CAS  PubMed  Google Scholar 

  177. Rovira-Clavé, X. et al. Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging. Nat. Commun. 12, 4628 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Manz, T. et al. Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web. Nat. Methods 19, 515–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Schapiro, D. et al. MITI minimum information guidelines for highly multiplexed tissue images. Nat. Methods 19, 262–267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Qin, Y. et al. A multi-scale map of cell structure fusing protein images and interactions. Nature 600, 536–542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Deng, Y. et al. Spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissues at genome scale and cellular level. Preprint at bioRxiv https://doi.org/10.1101/2021.06.06.447244 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022). This paper introduces the concept of spatial epigenomic profiling using spatial indexing of histone modifications using microfluidics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Tabula Sapiens Consortium. The Tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  189. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 374, eabl4290 (2022).

    Article  Google Scholar 

  191. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Ramani, V., Shendure, J. & Duan, Z. Understanding spatial genome organization: methods and insights. Genomics Proteom. Bioinforma. 14, 7–20 (2016).

    Article  Google Scholar 

  195. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. BRAIN Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  203. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Elosúa-Bayes and F. Björklund for support with the figure design. J.R.M. acknowledges funding from the Pew Charitable Trusts, the Helmsley Charitable Trust and the NIH (R01 GM143277, R21 CA249728). E.L. acknowledges funding from the Knut and Alice Wallenberg Foundation (KAW 2021.0346, KAW 2021.0189, KAW 2018.0172), Erling Persson Foundation, the NIH (U01 DK120447) and EU Horizon 2020 (EPIC-XS grant 823839 and ESPACE grant 874710). H.H. received support for the project PID2020-115439GB-I00 funded by MCIN/AEI/ 10.13039/501100011033. This publication is also supported as part of a project (BCLLATLAS and ESPACE) that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement nos. 810287 and 874710).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Holger Heyn.

Ethics declarations

Competing interests

J.R.M. is a co-founder of, consultant for and scientific advisory board member of Vizgen, Inc. E.L. is adviser for Pixelgen technologies and Moleculent. H.H. is co-founder of Omniscope and scientific advisory board member of MiRXES.

Peer review

Peer review information

Nature Reviews Genetics thanks Je H. Lee, Sinem K. Saka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Multiplexing

The simultaneous profiling of multiple gene transcripts or proteins through the application of pools with panels of detection probes or antibodies, respectively.

Deterministic barcoding

Flexible profiling of spatial coordinates through the targeted labelling of cells or regions of interest using molecular probes, cell tags or fluorescent markers.

Detection efficiency

In the context of image-based transcriptomics, this concept refers to the fraction of targeted molecules that are present in the sample that are actually detected. As single-molecule fluorescence in situ hybridization (smFISH) is often used as a proxy for ground-truth expression, this quantity is often calculated by comparison with smFISH, though comparison with single-cell RNA sequencing is also common. As there is no standard definition in the field, care should be taken in comparing values.

Formalin-fixed paraffin-embedded

(FFPE). Preservation method for tissues in long-term archival storage. After a tissue is collected, it is preserved through formalin fixation to preserve its spatial architecture and finally embedded in a paraffin wax block.

DNA nanoballs

(DNBs). Dense clusters of DNA amplified by rolling circle replication used for DNA sequencing or spatial RNA capture.

Rolling circle amplification

(RCA). A process by which a circularized single-stranded DNA, such as a padlock probe, is replicated into a long molecule composed of concatenated copies of the circularized probe by extending a bound primer with a polymerase capable of strand displacement.

Cluster density

Distance of clusters generated by local clonal oligonucleotide amplification within a sequencing flow cell.

Combinatorial indexing

Multistep split-pool process to index molecules with a unique combination of barcodes for subsequent identification of spatial location (spatial index) or cell identity (single-cell index).

Padlock probes

Single-stranded DNA or locked nucleic acid oligonucleotide probes hybridized to a target of interest such that the 3′ and 5′ ends align on the target molecule, allowing these ends to be ligated to circularize the probe.

Detection efficiency

Capacity to capture or label RNA, DNA or protein molecules to allow subsequent quantification.

SNAIL probes

Probes that contain a primer probe and a padlock probe, both of which hybridize to the same RNA, placing both probes in proximity such that the 3′ and 5′ end of the padlock can hybridize to the primer probe, allowing the circularization of the padlock via DNA-templated ligation.

Expansion microscopy

An effective super-resolution optical microscopy technique that increases effective optical resolution by attaching the signal of interest to a charged hydrogel that is then physically and isotropically expanded.

Combinatorial barcoding

This process involves the use of barcodes in which the value of individual barcode elements, e.g. ‘1’ values in individual bits of binary barcodes, are shared between multiple targets with targets discriminated by the unique combination of barcode elements, e.g. ‘101’ versus ‘110’.

Error-robust and correcting barcoding schemes

Barcoding schemes in which extra barcode elements are added that allow the detection of barcode elements corrupted in the measurement process and, for some errors, the identification of the correct value for the corrupted element.

Oligopools

Collections of tens to hundreds of thousands of unique, custom oligonucleotide sequences generated inexpensively but in small quantities by array-based methods.

Pseudocolours

Collections of images in which each molecule is fluorescent in only one image with that image representing the pseudocolour, i.e. n pseudocolours can be thought of as n-bit barcodes in which only one bit contains a ‘1’.

Hybridization chain reaction

(HCR). An amplification approach in which two meta-stable, fluorescently labelled DNA hairpins are used to polymerize a repeating structure from these hairpins.

Branched DNA amplification

(bDNA). An amplification approach that leverages a DNA oligonucleotide ‘amplifier’ that contains a targeting sequence in combination with multiple copies of a secondary binding site, effectively amplifying fluorescent signals by converting one binding site into multiples. Iterative rounds of amplification are possible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moffitt, J.R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat Rev Genet 23, 741–759 (2022). https://doi.org/10.1038/s41576-022-00515-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00515-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research