Skip to main content
Log in

Anthropogenic Emissions in the Combustion of Liquid Biofuel Droplets

  • RECYCLING INDUSTRIAL WASTE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Promising biofuel suspensions may be created on the basis of water, canola oil, and sawdust. The composition of their combustion products is studied in experiments on apparatus consisting mainly of a tubular muffle furnace (at 700–900°C) and a gas analyzer with sensors for recording CO2, CO, CH4, H2, SO2, and NO. The variation of the main anthropogenic emissions over all stages of fuel reaction is analyzed. The mean concentrations of the basic combustion products are calculated. The results are compared with the characteristics of composite liquid fuels based on processing wastes from traditional fuels. Optimal conditions are identified for the effective combustion of liquid biofuels based on liquid and solid plant wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Loureiro, L.M.E.F., Gil, P.B.F., Vieira de Campos, F.V., Nunes, L.J.R., and Ferreira, J.M.F., Dispersion and flow properties of charcoal oil slurries (ChOS) as potential renewable industrial liquid fuels, J. Energy Inst., 2018, vol. 91, pp. 978–983.  https://doi.org/10.1016/j.joei.2017.08.001

    Article  CAS  Google Scholar 

  2. Bhuiyan, A.A., Blicblau, A.S., Islam, A.K.M.S., and Naser, J., A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace, J. Energy Inst., 2018, vol. 91, pp. 1–18. https://doi.org/10.1016/j.joei.2016.10.006

    Article  CAS  Google Scholar 

  3. Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., and Vo, D.-V., Recent advances and sustainable development of biofuels production from lignocellulosic biomass, Bioresour. Technol., 2022, vol. 344B, p. 126203.  https://doi.org/10.1016/j.biortech.2021.126203

    Article  CAS  Google Scholar 

  4. Gutiérrez Ortiz, F.J., Biofuel production from supercritical water gasification of sustainable biomass, Energy Convers. Manage., 2022, vol. 14, p. 100164. https://doi.org/10.1016/j.ecmx.2021.100164

    Article  CAS  Google Scholar 

  5. Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F.E., Elkhouakhi, M., Sahibed-dine, A., Bentiss, F., Jama, Ch., and Bensitel, M., Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes, Waste Manage., 2019, vol. 97, pp. 10–18.  https://doi.org/10.1016/j.wasman.2019.07.033

    Article  CAS  Google Scholar 

  6. Rokni, E., Ren, X., Panahi, A., and Levendis, Y.A., Emissions of SO2, NOx, CO2, and HCl from co-firing of coals with raw and torrefied biomass fuels, Fuel, 2018, vol. 211, pp. 363–374.  https://doi.org/10.1016/j.fuel.2017.09.049

    Article  CAS  Google Scholar 

  7. Lif, A. and Holmberg, K., Water-in-diesel emulsions and related systems, Adv. Colloid Interface Sci., 2006, vols. 123–126, pp. 231–239.  https://doi.org/10.1016/j.cis.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  8. De Giorgi, M.G., Fontanarosa, D., Ficarella, A., and Pescini, E., Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor, Appl. Energy, 2020, vol. 260, p. 114263.  https://doi.org/10.1016/j.apenergy.2019.114263

    Article  CAS  Google Scholar 

  9. Meng, K., Fu, W., Li, F., Lei, Y., Lin, Q., and Wang, G., Comparison of ignition, injection and micro-explosion characteristics of RP-3 / ethanol and biodiesel/ethanol mixed drops, J. Energy Inst., 2020, vol. 93, pp. 152–164. https://doi.org/10.1016/j.joei.2019.04.002

    Article  CAS  Google Scholar 

  10. Avulapati, M.M., Ganippa, L.C., Xia, J., and Megaritis, A., Puffing and micro-explosion of diesel–biodiesel–ethanol blends, Fuel, 2016, vol. 166, pp. 59–66.  https://doi.org/10.1016/j.fuel.2015.10.107

    Article  CAS  Google Scholar 

  11. Ojha, P.K., Maji, R., and Karmakar, S., Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles, Combust. Flame, 2018, vol. 188, pp. 412–427.  https://doi.org/10.1016/j.combustflame.2017.10.005

    Article  CAS  Google Scholar 

  12. Avulapati, M.M., Megaritis, T., Xia, J., and Ganippa, L., Experimental understanding on the dynamics of microexplosion and puffing in ternary emulsion droplets, Fuel, 2019, vol. 239, pp. 1284–1292.  https://doi.org/10.1016/j.fuel.2018.11.112

    Article  CAS  Google Scholar 

  13. Nyashina, G.S., Shlegel, N.E., Vershinina, K.Yu., and Strizhak, P.A., Industrial waste as part of coal-water slurry fuels, Energy Fuels, 2018, vol. 32, pp. 11398–11410.  https://doi.org/10.1021/acs.energyfuels.8b02826

    Article  CAS  Google Scholar 

  14. Antonov, D.V., Volkov, R.S., and Strizhak, P.A., An explosive disintegration of heated fuel droplets with adding water, Chem. Eng. Res. Des., 2018, vol. 140, pp. 292–307.  https://doi.org/10.1016/j.cherd.2018.10.031

    Article  CAS  Google Scholar 

  15. Samec, N., Kegl, B., and Dibble, R.W., Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine, Fuel, 2002, vol. 81, pp. 2035–2044.  https://doi.org/10.1016/S0016-2361(02)00135-7

    Article  CAS  Google Scholar 

  16. Debnath, B.K., Sahoo, N., and Saha, U.K., Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine, Energy Convers. Manage., 2013, vol. 69, pp. 191–198.  https://doi.org/10.1016/j.enconman.2013.01.031

    Article  CAS  Google Scholar 

  17. Staroń, A., Kowalski, Z., Staroń, P., and Banach, M., Studies on CWL with glycerol for combustion process, Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 2835–2844. https://doi.org/10.1007/s11356-018-3814-0

    Article  CAS  Google Scholar 

  18. Zhao, J., Wang, T., Deng, J., Shu, C.-M., Zeng, Q., Guo, T., and Zhang, Yu., Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR, Energy, 2020, vol. 209, p. 118494. https://doi.org/10.1016/j.energy.2020.118494

    Article  CAS  Google Scholar 

  19. Winter, F., Wartha, C., and Hofbauer, H., NO and N2O formation during the combustion of wood, straw, malt waste and peat, Bioresour. Technol., 1999, vol. 70, pp. 39–49.  https://doi.org/10.1016/S0960-8524(99)00019-X

    Article  CAS  Google Scholar 

  20. Anufriev, I.S., Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends, Renew. Sustain. Energy Rev., 2021, vol. 138, p. 110665.  https://doi.org/10.1016/j.rser.2020.110665

    Article  Google Scholar 

  21. Panchenko, S.V., Dli, M.I., Fedulov, A.S., and Borisov, V.V., The study of methods of NOx inhibition during fuel combustion at power plants with allowance for the use of hydrogen additions, Int. J. Hydrogen Energy, 2017, vol. 42, no. 21, pp. 14656–14666. https://doi.org/10.1016/j.ijhydene.2017.04.210

    Article  CAS  Google Scholar 

  22. Kuznetsov, G.V., Nyashina, G.S., Valiullin, T.R., and Martova, S.V., Benefits of slurry fuels based on industrial wastes, Coke Chem., 2019, vol. 62, pp. 422–432.  https://doi.org/10.3103/S1068364X19090047

    Article  Google Scholar 

  23. Zhang, Z., Chen, D., Li, Z., Cai, N., and Imada, J., Development of sulfur release and reaction model for computational fluid dynamics modeling in sub-bituminous coal combustion, Energy Fuels, 2017, vol. 31, no. 2, pp. 1383–1398.  https://doi.org/10.1021/acs.energyfuels.6b02867

    Article  CAS  Google Scholar 

  24. Nyashina, G., Dorokhov, V., Kuznetsov, G., and Strizhak, P., Emissions from the combustion of high-potential slurry fuels, Environ. Sci. Pollut. Res., 2022, vol. 29, pp. 37989–38005.  https://doi.org/10.1007/s11356-021-17727-5

    Article  CAS  Google Scholar 

  25. Akhmetshin, M.R., Nyashina, G.S., and Strizhak, P.A., Normalizing anthropogenic gas emissions from the combustion of industrial waste as part of fuel slurries, Fuel, 2022, vol. 313, p. 122653.  https://doi.org/10.1016/j.fuel.2021.122653

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Russian President (grant MD-1616.2022.4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Antonov, V. V. Dorohov, G. S. Nyashina or D. S. Romanov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.V., Dorohov, V.V., Nyashina, G.S. et al. Anthropogenic Emissions in the Combustion of Liquid Biofuel Droplets. Coke Chem. 65, 137–143 (2022). https://doi.org/10.3103/S1068364X22040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X22040020

Navigation