Skip to main content
Log in

Effect of soil properties on radioactivity concentrations and dose assessment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study evaluated the correlation between radioactivity concentrations and soil properties, and determined the total annual effective dose near an underground geologic repository for transuranic wastes. Soil samples were collected from two historical monitoring areas (Near Field and Cactus Flats). Alpha-particle spectrometry was used for the analysis of 241Am, 239+240Pu and 238U, while 137Cs, 40K, 232Th and 226Ra were detected by gamma ray spectrometry. Higher radioactivity concentrations and stronger positive correlations between radioactivity concentrations and soil properties were obtained in Cactus Flats compared to Near Field. The total annual effective dose was lower than the recommended limit of 1 mSv y− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Oudat M, Asfary AF, Mukhalallti H, Al-Hamwi A, Kanakri S (2006) Transfer factors of 137Cs and 90Sr from soil to trees in arid regions. J Environ Radioact 90(1):78–88

    Article  CAS  PubMed  Google Scholar 

  2. Lujaniene G, Valiulis D, Bycenkiene S, Sakalys J, Povinec PP (2012) Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms. Atmos Environ 61:419–427

    Article  CAS  Google Scholar 

  3. Lokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Środoń J (2014) Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res 21(21):12479–12493

    Article  CAS  Google Scholar 

  4. Zheng MJ, Murad A, Zhou XD, Yi P, Alshamsi D, Hussein S, Chen L, Hou XL, Aldahan A, Yu ZB (2016) Distribution and sources of 226Ra in groundwater of arid region. J Radioanal Nucl Chem 309:667–675

    CAS  Google Scholar 

  5. Alewell C, Pitois A, Meusburger K, Ketterer M, Mabit L (2017) 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth Sci Rev 172:107–123

    Article  CAS  Google Scholar 

  6. Madzunya D, Dudu VP, Mathuthu M, Manjoro M (2020) Radiological health risk assessment of drinking water and soil dust from Gauteng and North West Provinces, in South Africa. Heliyon 6(2):e03392. https://doi.org/10.1016/j.heliyon.2020.e03392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bulubasa G, Costinel D, Miu AF, Ene MR (2021) Activity concentrations of 238U, 232Th, 226Ra 137Cs and 40K radionuclides in honey samples from Romania. Lifetime cancer risk estimated. J Environ Radioact 234:106626. DOI: https://doi.org/10.1016/j.jenvrad.2021.106626

    Article  CAS  PubMed  Google Scholar 

  8. Thakur P (2016) Source term estimation and the isotopic ratio of radioactive material released from the WIPP repository in New Mexico, USA. J Environ Radioact 151:193–203

    Article  CAS  PubMed  Google Scholar 

  9. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation. New York

  10. Agbalagba EO, Avwiri GO, Chad-Umoreh YE (2012) ɣ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J Environ Radioact 109:64–70

    Article  CAS  PubMed  Google Scholar 

  11. Alzubaidi G, Hamid FBS, Rahman IA (2016) Assessment of natural radioactivity levels and radiation hazards in agricultural and virgin soil in the state of kedah, North of Malaysia. Sci World J. https://doi.org/10.1155/2016/6178103

    Article  Google Scholar 

  12. Abdelbary HM, Elsofany EA, Mohamed YT, Abo-Aly MM, Attallah MF (2019) Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt. Environ Sci Pollut Res 26:30836–30846

    Article  CAS  Google Scholar 

  13. Ziajahromi S, Khanizadeh M, Nejadkoorki F (2015) Using the RESRAD code to assess human exposure risk to 226Ra, 232Th, and 40K in soil. Hum Ecol Risk Assess 21(1):250–264

    Article  CAS  Google Scholar 

  14. Towle KM, Jacobs NFB, Keenan JJ, Monnot AD (2018) The cancer risk associated with residential exposure to soil containing radioactive coal combustion residuals. Risk Anal 38(6):1107–1115

    Article  PubMed  Google Scholar 

  15. Bachman GO (1984) Regional geology of ochoan evaporates, northern part of Delaware basin. New Mexico State Records Center and Archives, p 184

  16. Gee GW, Bauder JW(1986) Particle size analysis. A. Klute (ed.). Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, 2nd Edition, 9(1):383–411, American Society of Agronomy, Madison, WI

  17. Nelson DW, Sommers LE(1996) Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 3. Chemical Methods, 961–1009. Soil Science Society of America. Madison WI

  18. Carlsbad Environmental Monitoring & Research Center (CEMRC) (2010) Report. Carlsbad, New Mexico

    Google Scholar 

  19. Thakur P, Ballard S, Conca JL (2011) Sequential isotopic determination of plutonium, thorium, americium and uranium in the air filter and drinking water samples around the WIPP site. J Radioanal Nucl Chem 287:311–321

    Article  CAS  Google Scholar 

  20. Hindman FD (1983) Neodymium fluoride mounting for alpha spectrometric determination of uranium, plutonium and americium. Anal Chem 55:2460–2461

    Article  CAS  Google Scholar 

  21. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008) Sources and effects of ionizing radiation. New York

  22. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305(2):573–582

    Article  CAS  Google Scholar 

  23. Durusoy A, Yildirim M (2017) Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. J Radiat Res Appl Sc 10(4):348–352

    CAS  Google Scholar 

  24. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1988) Sources, effects and risk of ionizing radiation. New York

  25. Kirchner TB, Webb JL, Webb SB, Arimoto R, Schoep DA, Stewart BD (2002) Variability in background levels of surface soil radionuclides in the vicinity of the US DOE waste isolation pilot plant. J Environ Radioact 60(3):275–291

    Article  CAS  PubMed  Google Scholar 

  26. Thakur P, Ballard S, Nelson R (2012) Plutonium in the WIPP environment: its detection, distribution and behavior. J Environ Monit 14:1604–1615

    Article  CAS  PubMed  Google Scholar 

  27. Thakur P, Mulholland GP (2011) Monitoring of gross alpha, gross beta and actinides activities in exhaust air released from the waste isolation pilot plant. Appl Radiat Isot 69:1307–1312

    Article  CAS  PubMed  Google Scholar 

  28. Thakur P, Lemons BG, Ballard S, Hardy R (2015) Environmental and health impacts of February 14, 2014 radiation release from the nation’s only deep geologic nuclear waste repository. J Environ Radioact 146:6–15

    Article  CAS  PubMed  Google Scholar 

  29. Thakur P, Lemons BG, White CR (2016) The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA. Sci Total Environ 565:1124–1137

    Article  CAS  PubMed  Google Scholar 

  30. Chugg JC, Anderson GW, King DL, Jones LH (1971) Soil survey of eddy county, New Mexico. United States Department of Agriculture, Washington, DC

    Google Scholar 

  31. Turner MT, Cox DN, Mickelson BC, Roath AJ, Wilson CD (1974) Soil survey of lea county, New Mexico. United States Department of Agriculture, Washington, DC

    Google Scholar 

  32. Oorts K, Vanlauwe B, Merckx R (2003) Cation exchange capacities of soil organic matter fractions in a ferric lixisol with different organic matter inputs. Agric Ecosyst Environ 100(2):161–171

    Article  CAS  Google Scholar 

  33. Ahmad AY, Al-Ghouti MA, AlSadig I, Abu-Dieyeh M (2019) Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples. Sci Rep 9:12196. https://doi.org/10.1038/s41598-019-48500-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vanden Bygaart AJ, Kay BD (2004) Persistence of soil organic carbon after plowing a long-term no-till field in southern Ontario, Canada. Soil Sci Soc Am J 68(4):1394–1402

    Article  CAS  Google Scholar 

  35. Azlan A, Aweng ER, Ibrahim CO, Noorhaidah A (2012) Correlation between soil organic matter, total organic matter and water content with climate and depths of soil at different land use in Kelantan, Malaysia. J Appl Sci Environ Manag 16(4):346–358

    Google Scholar 

  36. Al-Sulaiti H, Nasir T, Regan PH, Bradley D, Al-Mugren K, Alkhomashi N, Al-Dahan N, Al-Dosari M, Bukhari SJ, Matthews M, Santawamaitre T, Malain D, Habib A (2014) Effect of the grain size of the soil on the measured activity and variation in activity in surface and sub surface soil samples. Pak j sci ind res Ser A: phys sci 57(3):129–138

    Article  Google Scholar 

  37. Mesrar H, Sadiki A, Faleh A, Quijano L, Gaspar L, Navas A (2017) Vertical and lateral distribution of fallout 137Cs and soil properties along representative toposequences of central Rif, Morocco. J Environ Radioact 169–170:27–39

    Article  PubMed  Google Scholar 

  38. Vyas BN, Mistry KB (1981) Influence of clay mineral type and organic matter content on the uptake of 239Pu and 241Am in by plants. Plant and Soil 59(1):75–82

    Article  CAS  Google Scholar 

  39. Lee MH, Lee CW (2000) Association of fallout-derived 137Cs, 90Sr and 239,240Pu with natural organic substances in soils. J Environ Radioact 47(3):253–262

    Article  CAS  Google Scholar 

  40. Sokolik G, Ovsiannikova S, Kimlenko I (2002) Soil organic matter and migration properties of 239–240Pu and 241Am. Radioprotection – Colloques 37:283–288

    Google Scholar 

  41. Ovsiannikova S, Papenia M, Voinikava K, Brown J, Skipperud L, Sokolik G, Svirschevsky S (2010) Migration ability of plutonium and americium in the soils of Polessie State Radiation-Ecological Reserve. J Radioanal Nucl Chem 286:409–415

    Article  CAS  Google Scholar 

  42. Wasserman MAV, Pereira TR, Rochedo ERR, Sousa WO, Pérez DV, Pinheiro EFM, Simões Filho FFL (2011) The influence of Brazilian soils properties in Americium sorption. Radioprotection 46(6):S579–S585

    Article  Google Scholar 

  43. Kumar A, Rout S, Mishra MK, Karpe R, Ravi PM, Tripathi RM (2015) Impact of particle size, temperature and humic acid on sorption of uranium in agricultural soils of Punjab. SpringerPlus 4:262

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu C, Zhang S, Sugiyama Y, Ohte N, Ho YF, Fujitake N, Kaplan DI, Yeager CM, Schwehr K, Santschi PH (2016) Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. J Environ Radioact 153:156–166

    Article  CAS  PubMed  Google Scholar 

  45. Yang S, Zhang X, Wu X, Li M, Zhang L, Huang Q (2019) Adsorption characteristics of U (VI) in the soil horizons near uranium tailing impoundment area. Int J Eng Technol 11(1):44–47

    Article  CAS  Google Scholar 

  46. Morton LS, Evans CV, Estes GO (2002) Natural uranium and thorium distributions in podzolized soils and native blueberry. J Environ Qual 31(1):155–162

    Article  CAS  PubMed  Google Scholar 

  47. Navas A, Soto J, Machín J (2002) Edaphic and physiographic factors affecting the distribution of natural gamma-emitting radionuclides in the soils of the Arnás catchment in the Central Spanish Pyrenees. Eur J Soil Sci 53(4):629–638

    Article  Google Scholar 

  48. Vukašinović I, Đorđević A, Rajković MB, Todorović D, Pavlović VB (2010) Distribution of natural radionuclides in anthrosol-type soil. Turk J Agric For 34(6):539–546

    Google Scholar 

  49. Okedeyi AS, Gbadebo AM, Mustapha AO (2014) Effects of physical and chemical properties on natural radionuclides level in soil of quarry sites in Ogun State, Nigeria. J Appl Sci 14(7):691–696

    Article  CAS  Google Scholar 

  50. Tsai TL, Liu CC, Chuang CY, Wei HJ, Men LC (2011) The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and evaluation of radiation hazard in the soil of Taiwan using statistical analysis. J Radioanal Nucl Chem 288(3):927–936

    Article  CAS  Google Scholar 

  51. Hegazy AK, Afifi SY, Alatar AA, Alwathnani HA, Emam MH (2013) Soil characteristics influence the radionuclide uptake of different plant species. Chem Ecol 29(3):255–269

    Article  CAS  Google Scholar 

  52. Zubair M, Shafiqullah (2020) Measurement of natural radioactivity in several sandy-loamy soil samples from Sijua. Dhanbad India Heliyon 6(3):e03430. DOI:https://doi.org/10.1016/j.heliyon.2020.e03430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the U.S. Department of Energy, Carlsbad Field Office through grant No. DE-EM 0005159. The opinions, findings, and conclusions expressed are those of the authors and do not necessarily reflect the views of the sponsors. Authors thank Savannah Hixon and Jim Monks from CEMRC for providing the soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir M. González-Delgado.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Delgado, A.M., Thakur, P. Effect of soil properties on radioactivity concentrations and dose assessment. J Radioanal Nucl Chem 331, 3535–3544 (2022). https://doi.org/10.1007/s10967-022-08416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08416-9

Keywords

Navigation