Skip to main content
Log in

Anisotropic Attenuation Compensated Reverse Time Migration of Pure qP-Wave in Transversely Isotropic Attenuating Media

  • Review Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The absorption (anelastic attenuation) and anisotropy properties of subsurface media jointly affect the seismic wave propagation and the quality of migration imaging. Anisotropic viscoelastic model can effectively describe seismic velocity and attenuation anisotropy effects. To reduce the computational cost and complexity of elastic wave modes decoupling for seismic imaging in anisotropic attenuating media, we have developed a pure-viscoacoustic transversely isotropic (TI) wave equation starting from the complex-valued velocity dispersion relation of quasi-compressional (qP) wave. The wave equation involving fractional Laplacians has advantages of being able to describe the constant-Q (frequency-independent quality factor) attenuation, arbitrary TI velocity and attenuation, decoupled amplitude loss and velocity dispersion effects. Numerical analyses showed that the simplified equation can accurately hold the velocity and attenuation anisotropy of qP-wave in viscoelastic anisotropic media in the range of moderate anisotropy. Compared to previous pseudo-viscoacoustic equations, the pure-viscoacoustic equation can be completely free from undesirable S-wave artifacts and behaves good numerical stability in tilted transversely isotropic (TTI) attenuating media. There are obvious wavefield differences between isotropic attenuation and anisotropic attenuation cases especially in the direction perpendicular to the axis of symmetry. Furthermore, to mitigate the influences of velocity and attenuation anisotropy on migrated seismic images, we have developed an anisotropic attenuation (Q) compensated reverse time migration (AQ-RTM) approach based on the new propagator. The compensation can be implemented by reversing the sign of the dissipation terms and keeping the dispersion terms unchanged during wavefields extrapolation. Synthetic example from a Graben model illustrated that the anisotropic Q-compensated RTM scheme can produce images with more balanced amplitude and accurate position of reflecters compared with conventional RTM methods under assumptions of acoustic anisotropic (uncompensated) and isotropic attenuating media. Results from a Marmousi-II model demonstrated that the new methodology is applicable for complicated geological model to significantly improve imaging resolution of the target area and deep layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Herndon

    Google Scholar 

  • Alkhalifah T (1997) An anisotropic Marmousi model: Stanford Exploration Project, pp 265–282

  • Alkhalifah T (2000) An acoustic wave equation for anisotropic media. Geophysics 65(4):1239–1250

    Article  Google Scholar 

  • Bai J, Chen G, Yingst D, Leveille J (2013) Attenuation compensation in viscoacoustic reverse time migration. 83rd Annual International Meeting SEG Expanded Abstracts. pp 3825–3830

  • Bai T, Tsvankin I (2016) Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics 81(2):C69–C77

    Article  Google Scholar 

  • Bai T, Tsvankin I, Wu X (2017) Waveform inversion for attenuation estimation in anisotropic media. Geophysics 82(4):WA83–WA93

    Article  Google Scholar 

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy, 1st edn. CRC, Boca Raton

    Google Scholar 

  • Carcione JM (1995) Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics 60(3):537–548

    Article  Google Scholar 

  • Carcione JM (2010) A generalization of the Fourier pseudospectral method. Geophysics 75(1):A53–A56

    Article  Google Scholar 

  • Carcione JM, Kosloff D, Kosloff R (1988) Wave propagation in a linear viscoelastic medium. Geophys J R Astron Soc 95(1):597–611

    Article  Google Scholar 

  • Carcione JM, Cavallini F, Mainardi F, Hanyga A (2002) Time domain seismic modeling of constant-Q wave propagation using fractional derivatives. Pure Appl Geophys 159:1719–1736

    Article  Google Scholar 

  • Carcione JM, Picotti S, Santos JE (2012) Numerical experiments of fracture-induced velocity and attenuation anisotropy. Geophys J Int 191(2):1179–1191

    Google Scholar 

  • Chen H, Zhou H, Li Q, Wang Y (2016) Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation. Geophysics 81(5):T233–T249

    Article  Google Scholar 

  • Chen S, Wei Q, Liu L, Li X (2018) Data-Driven attenuation compensation via a shaping regularization scheme. IEEE Geosci Remote Sens Lett 15(11):1667–1671

    Article  Google Scholar 

  • Chichinina TI, Obolentseva IR, Gik L, Bobrov B, Ronquillo-Jarillo G (2009) Attenuation anisotropy in the linear-slip model: interpretation of physical modeling data. Geophysics 74(1): WB165-WB176

  • Chu C, Macy BK, Anno PD (2011) Approximation of pure acoustic seismic wave propagation in TTI media. Geophysics 76(5):WB97–WB107

    Article  Google Scholar 

  • Claerbout JF (1971) Toward a unified theory of reflector mapping. Geophysics 36(1):467–481

    Article  Google Scholar 

  • Da Silva NV, Yao G, Warner M (2019) Wave modeling in viscoacoustic media with transverse isotropy. Geophysics 84(1):C41–C56

    Article  Google Scholar 

  • Day SM, Minster JB (1984) Numerical simulation of attenuated wavefields using a Padé approximant method. Geophys J Int 78(1):105–118

    Article  Google Scholar 

  • Deng F, McMechan GA (2008) Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics 73(4):S143–S155

    Article  Google Scholar 

  • Dutta G, Schuster GT (2014) Attenuation compensation for leastsquares reverse time migration using the viscoacoustic-wave equation. Geophysics 79(6):S251–S262

    Article  Google Scholar 

  • Dutta G, Schuster GT (2016) Wave-equation Q tomography. Geophysics 81(6):R471–R484

    Article  Google Scholar 

  • Duveneck E, Bakker PM (2011) Stable P-wave modeling for reverse time migration in tilted TI media. Geophysics 76(2):S65–S75

    Article  Google Scholar 

  • Emmerich H, Korn M (1987) Incorporation of attenuation into time domain computations of seismic wave fields. Geophysics 52(2):1252–1264

    Article  Google Scholar 

  • Etgen J, Gray SH, Zhang Y (2009) An overview of depth imaging in exploration geophysics. Geophysics 74(6):WCA5–WCA17

    Article  Google Scholar 

  • Fathalian A, Daniel OT, Kristopher AI (2020) An approach for attenuation-compensating multidimensional constant-Q viscoacoustic reverse time migration. Geophysics 85(1):S33–S46

    Article  Google Scholar 

  • Fathalian A, Trad DO, Innanen KA (2021) Q-compensated reverse time migration in tilted transversely isotropic media. Geophysics 86(1):S73–S89

    Google Scholar 

  • Fomel S (2002) Applications of plane-wave destruction filters. Geophysics 67(6):1946–1960

    Article  Google Scholar 

  • Guo P, McMechan GA, Guan H (2016) Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics 81(5):S281–S297

    Article  Google Scholar 

  • Hao Q, Alkhalifah T (2019) Viscoacoustic anisotropic wave equations. Geophysics 84(6):C323–C337

    Article  Google Scholar 

  • Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84(9):4737–4748

    Article  Google Scholar 

  • Mu XR, Huang JP, Yong P, Huang JQ, Guo X, Liu DJ, Hu ZD (2020) Modeling of pure qP- and qSV-waves in tilted transversely isotropic media with the optimal quadratic approximation. Geophysics 85(2):C71–C89

    Article  Google Scholar 

  • Picotti S, Carcione JM, Santos JE, Gei D (2010) Q anisotropy in finely layered media. Geophys Res Lett 37(1):042–046

    Google Scholar 

  • Qiao Z, Sun C, Tang J (2020) Modelling of viscoacoustic wave propagation in transversely isotropic media using decoupled fractional Laplacians. Geophys Prospect 68(8):2400–2418

    Article  Google Scholar 

  • Qiao Z, Sun C, Wu D (2019) Theory and modelling of constant-Q viscoelastic anisotropic media using fractional derivative. Geophys J Int 217(2):798–815

    Article  Google Scholar 

  • Qu Y, Huang J, Li Z, Guan Z, Li J (2017) Attenuation compensation in anisotropic least-squares reverse time migration. Geophysics 82(6):S411–S423

    Article  Google Scholar 

  • Quan Y, Harris JM (1997) Seismic attenuation tomography using the frequency shift method. Geophysics 62(1):895–905

    Article  Google Scholar 

  • Robertsson JOA, Blanch JO, Symes WW (1994) Viscoelastic finite-difference modeling. Geophysics 59:1444–1456

    Article  Google Scholar 

  • Santos JE, Corredor RM, Carcione JM (2014) Seismic velocity and Q anisotropy in fractured poroelastic media. Int J Rock Mech Min Sci 70(1):212–218

    Article  Google Scholar 

  • Sun J, Fomel S, Zhu T, Hu J (2016) Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation. Geophysics 81(4):S271–S279

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  • Tsvankin I. (2012) Seismic signatures and analysis of reflection data in anisotropic media, 3rd ed. Society of Exploration Geophysicists

  • Wang Y (2002) A stable and efficient approach of inverse Q filtering. Geophysics 67(1):657–663

    Article  Google Scholar 

  • Wang Y, Zhou H, Chen H, Chen Y (2018) Adaptive stabilization for Q-compensated reverse time migration. Geophysics 83(1):S15–S32

    Article  Google Scholar 

  • Yan J, Liu H (2016) Modeling of pure acoustic wave in tilted transversely isotropic media using optimized pseudo-differential operators. Geophysics 81(3):T91–T106

    Article  Google Scholar 

  • Yang C, Li X, Wang Y (2015) An analysis of 3D anisotropic-viscoelastic forward modeling and dissipation. J Geophys Eng 12(3):1036–1048

    Article  Google Scholar 

  • Yang J, Hua B, Williamson P, Zhu H, McMechan G, Huang J (2020) Elastic least-squares imaging in tilted transversely isotropic media for multicomponent land and pressure marine data. Surv Geophys 41(1):805–833

    Article  Google Scholar 

  • Yang J, Huang J, Zhu H, Li Z, Dai N (2021) Viscoacoustic reverse time migration with a robust space-wavenumber domain attenuation compensation operator. Geophysics 86(5):S339–S353

    Article  Google Scholar 

  • Zhan G, Pestana RC, Stoffa PL (2012) Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics 77(2):T37–T45

    Article  Google Scholar 

  • Zhang Y, Liu Y, Xu S (2020) Anisotropic viscoacoustic wave modelling in VTI media using frequency-dependent complex velocity. J Geophys Eng 17(4):700–717

    Google Scholar 

  • Zhang Y, Liu Y, Xu S (2021) Viscoelastic wave simulation with high temporal accuracy using frequency-dependent complex velocity. Surv Geophys 42(1):97–132

    Article  Google Scholar 

  • Zhu T, Bai T (2019) Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian. Geophysics 84(3):T121–T131

    Article  Google Scholar 

  • Zhu T, Carcione JM (2014) Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives. Geophys J Int 196(2):1787–1795

    Article  Google Scholar 

  • Zhu T, Carcione JM, Harris JM (2013) Approximating constant-Q seismic propagation in the time domain. Geophys Prospect 61(4):931–940

    Article  Google Scholar 

  • Zhu T, Harris JM (2014) Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79(3):T105–T116

    Article  Google Scholar 

  • Zhu T, Harris JM, Biondi B (2014) Q-compensated reverse-time migration. Geophysics 79(3):S77–S87

    Article  Google Scholar 

  • Zhu T, Sun J (2017) Viscoelastic reverse-time migration with attenuation compensation. Geophysics 82(2):S61–S73

    Article  Google Scholar 

  • Zhu Y, Tsvankin I, Vasconcelos I (2007) Effective attenuation anisotropy of thin-layered media. Geophysics 72(3):D93–D106

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (41774128, 41874153) and the National Key Research Project of China (2018YFB0605601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: 3D Pure-Viscoacoustic TI Wave Equation

Under acoustic approximation, the dispersion relation of qP-wave in 3D VTI attenuating media can be simplified as

$$\omega^{2} \approx \rho^{ - 1} \left[ {M_{11} \left( {k_{x}^{2} + k_{y}^{2} } \right) + M_{33} k_{z}^{2} + \frac{{\left( {M_{13} \sqrt {1 + 2\delta } - M_{11} } \right)\left( {k_{x}^{2} + k_{y}^{2} } \right)k_{z}^{2} }}{{\left( {1 + 2\varepsilon } \right)\left( {k_{x}^{2} + k_{y}^{2} } \right) + k_{z}^{2} }}} \right],$$
(27)

The corresponding time-wavenumber domain wave equation for dispersion relation is,

$$\frac{{\partial^{2} p}}{{\partial t^{2} }} = - \left[ {L_{11} \left( {k_{x}^{2} + k_{y}^{2} } \right) + L_{33} k_{z}^{2} + \left( {L_{13} \sqrt {1 + 2\delta } - L_{11} } \right)\frac{{\left( {k_{x}^{2} + k_{y}^{2} } \right)k_{z}^{2} }}{{k^{2} }}} \right]p,$$
(28)

where Lij denote fractional Laplace operators in Eq. (10). where \(k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2}\), here we assume \(\varepsilon = 0\) for the denominator of the fractional term. The wave equation can be conveniently solved by using the pseudospectral method as follow

$$\begin{aligned} \frac{{\partial^{2} p}}{{\partial t^{2} }} & = L_{11} \mathcal{F}^{ - 1} \left[ { - \left( {k_{x}^{2} + k_{y}^{2} } \right)\mathcal{F}\left[ p \right]} \right] + L_{33} \mathcal{F}^{ - 1} \left[ { - k_{z}^{2} \mathcal{F}\left[ p \right]} \right] \\ & \,\,\,\, + \left( {L_{13} \sqrt {1 + 2\delta } - L_{11} } \right)\mathcal{F}^{ - 1} \left[ { - \frac{{\left( {k_{x}^{2} + k_{y}^{2} } \right)k_{z}^{2} }}{{k^{2} }}\mathcal{F}\left[ p \right]} \right], \\ \end{aligned}$$
(29)

The similar dispersion relation of qP-wave for TTI attenuating media in 3D case can be deduced from Eq. (27) through coordinate transformation as

$$\begin{aligned} \rho \omega^{2} & \approx M_{11} \left( {\tilde{k}_{x}^{2} + \tilde{k}_{y}^{2} } \right) + \left( {M_{33} + M_{13} \sqrt {1 + 2\delta } - M_{11} } \right)\tilde{k}_{z}^{2} \\ + \left( {M_{11} - M_{13} \sqrt {1 + 2\delta } } \right)\frac{{\tilde{k}_{z}^{4} }}{{k^{2} }}, \\ \end{aligned}$$
(30)

where \(\tilde{k}_{x} ,\tilde{k}_{y} ,\tilde{k}_{z}\) are spatial wavenumbers in the rotated coordinate system.

Substituting the following transformation formula from Eq. (13)

$$\begin{gathered} \tilde{k}_{x} = k_{x} \cos \tilde{\theta }\cos \phi + k_{y} \cos \tilde{\theta }\sin \phi + k_{z} \sin \tilde{\theta }, \hfill \\ \tilde{k}_{y} = - k_{x} \sin \phi + k_{y} \cos \phi , \hfill \\ \tilde{k}_{z} = - k_{x} \sin \tilde{\theta }\cos \phi - k_{y} \sin \tilde{\theta }\sin \phi + k_{z} \cos \tilde{\theta }, \hfill \\ \end{gathered}$$
(31)

into Eq. (30) and after some algebraic manipulations, the dispersion relation can be futher formulate as.

\(\rho \omega^{2} \approx M_{11} w_{1} + \left( {M_{33} + M_{13} \sqrt {1 + 2\delta } - M_{11} } \right)w_{2} + \left( {M_{11} - M_{13} \sqrt {1 + 2\delta } } \right)w_{3} ,\), (32).where

$$\begin{aligned} w_{1} & = \left( {\cos^{2} \tilde{\theta }\cos^{2} \phi + \sin^{2} \phi } \right)k_{x}^{2} + \left( {\cos^{2} \tilde{\theta }\sin^{2} \phi + \cos^{2} \phi } \right)k_{y}^{2} + \sin^{2} \tilde{\theta }k_{z}^{2} \\ \, & \,\,\,\,\, - \sin^{2} \tilde{\theta }\sin 2\phi k_{x} k_{y} + \sin 2\tilde{\theta }\cos \phi k_{x} k_{z} + \sin 2\tilde{\theta }\sin \phi k_{y} k_{z} , \\ \\ w_{2} & = \sin^{2} \tilde{\theta }\cos^{2} \phi k_{x}^{2} + \sin^{2} \tilde{\theta }\sin^{2} \phi k_{y}^{2} + \cos^{2} \tilde{\theta }k_{z}^{2} \\ \, & \,\,\,\,\,{ + }\sin^{2} \tilde{\theta }\sin 2\phi k_{x} k_{y} - \sin 2\tilde{\theta }\cos \phi k_{x} k_{z} - \sin 2\tilde{\theta }\sin \phi k_{y} k_{z} , \\ \\ w_{3} & = \sin^{4} \tilde{\theta }\cos^{4} \phi \frac{{k_{x}^{4} }}{{k^{2} }} + \sin^{4} \tilde{\theta }\sin^{4} \phi \frac{{k_{y}^{4} }}{{k^{2} }} + \cos^{4} \tilde{\theta }\frac{{k_{z}^{4} }}{{k^{2} }} \\ \, & \,\,\,\,\, + 2\sin^{4} \tilde{\theta }\sin 2\phi \cos^{2} \phi \frac{{k_{x}^{3} k_{y} }}{{k^{2} }} - 2\sin 2\tilde{\theta }\sin^{2} \tilde{\theta }\cos^{3} \phi \frac{{k_{x}^{3} k_{z} }}{{k^{2} }} + 2\sin^{4} \tilde{\theta }\sin 2\phi \sin^{2} \phi \frac{{k_{x} k_{y}^{3} }}{{k^{2} }} \\ \, & \,\,\,\,\, - 2\sin 2\tilde{\theta }\sin^{2} \tilde{\theta }\sin^{3} \phi \frac{{k_{y}^{3} k_{z} }}{{k^{2} }} - 2\sin 2\tilde{\theta }\cos^{2} \tilde{\theta }\cos \phi \frac{{k_{x} k_{z}^{3} }}{{k^{2} }} - 2\sin 2\tilde{\theta }\cos^{2} \tilde{\theta }\sin \phi \frac{{k_{y} k_{z}^{3} }}{{k^{2} }} \\ \, & \,\,\,\,\, + \frac{3}{2}\sin^{4} \tilde{\theta }\sin^{2} 2\phi \frac{{k_{x}^{2} k_{y}^{2} }}{{k^{2} }} + \frac{3}{2}\sin^{2} 2\tilde{\theta }\cos^{2} \phi \frac{{k_{x}^{2} k_{z}^{2} }}{{k^{2} }} + \frac{3}{2}\sin^{2} 2\tilde{\theta }\sin^{2} \phi \frac{{k_{y}^{2} k_{z}^{2} }}{{k^{2} }} \\ \, & \,\,\,\,\, - 3\sin 2\tilde{\theta }\sin^{2} \tilde{\theta }\sin 2\phi \cos \phi \frac{{k_{x}^{2} k_{y} k_{z} }}{{k^{2} }} - 3\sin 2\tilde{\theta }\sin^{2} \tilde{\theta }\sin 2\phi \sin \phi \frac{{k_{x} k_{y}^{2} k_{z} }}{{k^{2} }} + \frac{3}{2}\sin 2\tilde{\theta }\sin 2\phi \frac{{k_{x} k_{y} k_{z}^{2} }}{{k^{2} }}. \\ \end{aligned}$$
(33)

The corresponding 3D pure-viscoacoustic TTI wave equation in the time-wavenumber domain is

$$\frac{{\partial^{2} p}}{{\partial t^{2} }} = \left[ {L_{11} w_{1} + \left( {L_{33} + L_{13} \sqrt {1 + 2\delta } - L_{11} } \right)w_{2} + \left( {L_{11} - L_{13} \sqrt {1 + 2\delta } } \right)w_{3} } \right]p.$$
(34)

When the dip angle \(\tilde{\mu } = 0\), the Eq. (34) reduces to the 3D viscoacoustic VTI case. Similarly, the wavenumber terms and the fractional Laplacians in the equation can be implemented numerically using the pseudospectral method.

Appendix 2: Parameterization for TI Attenuating Media

The anisotropic attenuation can be described by quality factors matrix. As follows from Eq. (3), the Q matrix inherits the structure of the stiffness matrix. For the VTI media with VTI attenuation, the Q matrix has the form

$${\text{Q}} = \left[ {\begin{array}{*{20}c} {Q_{11} } & {Q_{12} } & {Q_{13} } & 0 & 0 & 0 \\ {Q_{12} } & {Q_{11} } & {Q_{13} } & 0 & 0 & 0 \\ {Q_{13} } & {Q_{13} } & {Q_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {Q_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {Q_{44} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {Q_{66} } \\ \end{array} } \right],$$
(35)

where \(Q_{11}\) and \(Q_{33}\) are P-wave quality factors in horizontal and vertical directions, \(Q_{55}\) is SV-wave quality factor and aslo responsible for the SH-wave attenuation in the symmetry (vertical) direction, \(Q_{66}\) is responsible for the SH-wave attenuation in the horizontal direction.

For the convenience of description, three dimensionless attenuation anisotropy parameters following the idea of the Thomsen notation for elastic anisotropy are defined as (Zhu and Tsvankin 2006)

$$\varepsilon_{Q} = \frac{{Q_{33} - Q_{11} }}{{Q_{11} }},$$
(36)
$$\delta_{Q} = \frac{{\frac{{Q_{33} - Q_{55} }}{{Q_{55} }}C_{44} \frac{{\left( {C_{13} + C_{33} } \right)^{2} }}{{\left( {C_{33} - C_{55} } \right)^{2} }} + 2\frac{{Q_{33} - Q_{55} }}{{Q_{13} }}C_{13} \left( {C_{13} + C_{55} } \right)}}{{C_{33} \left( {C_{33} - C_{55} } \right)}},$$
(37)
$$\gamma_{Q} = \frac{{Q_{55} - Q_{66} }}{{Q_{66} }}.$$
(38)

where \(\varepsilon_{Q}\) describes the difference between the P-wave attenuation in the horizontal and vertical directions, \(\gamma_{Q}\) is responsible for the attenuation anisotropy of SH-waves, \(\delta_{Q}\) controls the curvature of the P-wave attenuation coefficient near the vertical direction. Under the acoustic VTI approximation (i.e., \(C_{44} = 0\)), Eq. (37) can be simplified to

$$\delta_{Q} = \frac{{2\left( {Q_{33} - Q_{13} } \right)C_{13}^{2} }}{{Q_{13} C_{33}^{2} }}$$
(39)

when \(\varepsilon_{Q} = \delta_{Q} = 0\), the P-wave attenuation is isotropic (independent of directions) for arbitrary velocity anisotropy.

Appendix 3: Analytical Phase Velocity and Quality Factor

The frequency-dependent complex velocity is the key to describe seismic wave velocity and attenuation effects in attenuating media. According to the Eq. (7), the directionally dependent complex velocity of P-wave in pure-viscoacoustic VTI approximation case can be can be written as

$$V_{{\text{P}}} (\theta ) \approx \rho^{ - 1/2} \left[ {\left( {M_{11} \sin^{2} \theta + M_{33} \cos^{2} \theta } \right) + \frac{{\left( {M_{13} \sqrt {1 + 2\delta } - M_{11} } \right)\sin^{2} \theta \cos^{2} \theta }}{{\left( {1 + 2\varepsilon } \right)\sin^{2} \theta + \cos^{2} \theta }}} \right]^{1/2} ,$$
(40)

and the analytical expressions of anisotropic phase velocity and quality factor of P-wave are given by

$$v_{{\text{P}}} \left( \theta \right) = \left[ {{\text{Re}} \left( {1/V_{{\text{P}}} } \right)} \right]^{ - 1} ,$$
(41)
$$Q_{{\text{P}}} (\theta ) = \frac{{{\text{Re}} \left( {V_{{\text{P}}}^{2} } \right)}}{{{\text{Im}} \left( {V_{{\text{P}}}^{2} } \right)}},$$
(42)

where \({\text{Re}}\) and \({\text{Im}}\) are the real and imaginary parts of a complex variable. Similarly, we can obtain the corresponding analytical expressions of P-wave phase velocity and quality factor in viscoelastic VTI and approximate pure-viscoacoustic TTI cases based on Eqs. (4) and (15), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Chen, T. & Sun, C. Anisotropic Attenuation Compensated Reverse Time Migration of Pure qP-Wave in Transversely Isotropic Attenuating Media. Surv Geophys 43, 1435–1467 (2022). https://doi.org/10.1007/s10712-022-09717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09717-0

Keywords

Navigation