Skip to main content
Log in

Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Amorphous calcium phosphate powders stabilized by crystallization inhibitors based on carboxylate and phosphate salts have been obtained by precipitation from solutions at 10 and 25°C. The presence of inhibitors leads to dispersed precipitates especially for samples with \({{{\text{P}}}_{{\text{3}}}}{\text{O}}_{9}^{{3 - }}\) and \({{{\text{P}}}_{{\text{3}}}}{\text{O}}_{{10}}^{{5 - }}\) (the size of primary agglomerates is 300–400 nm); the high values of ζ potential for particles in \({{{\text{P}}}_{{\text{2}}}}{\text{O}}_{7}^{{4 - }}{\text{,}}\) \({{{\text{P}}}_{{\text{3}}}}{\text{O}}_{9}^{{3 - }}\), and \({{{\text{P}}}_{{\text{3}}}}{\text{O}}_{{10}}^{{5 - }}\) suspensions (<–20 mV) indicate the sufficient aggregative stability of such suspensions. Practical interest in the context of the use of amorphous phosphate powders for production of bioceramics and composites by stereolithographic 3D printing is attracted to phosphates obtained in the presence of trimeta- and tripolyphosphates, inhibitors studied in this work for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Langer, Molecular Therapy 1, 12 (2000). https://doi.org/10.1006/mthe.1999.0003

    Article  CAS  PubMed  Google Scholar 

  2. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and Jr. J. A. Cooper, Annu. Rev. Biomed. Eng. 1, 19 (1999). https://doi.org/10.1146/annurev.bioeng.1.1.19

    Article  CAS  PubMed  Google Scholar 

  3. S. Eshraghi and S. Das, Acta Biomater. 6, 2467 (2010). https://doi.org/10.1016/j.actbio.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Kolk, J. Handschel, W. Drescher, et al., J. Cranio-Maxillo-Facial Surgery 40, 706 (2012). https://doi.org/10.1016/j.jcms.2012.01.002

    Article  Google Scholar 

  5. M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008). https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. D. Currey, J. Mater. Sci. 47, 41 (2012). https://doi.org/10.1007/s10853-011-5914-9

    Article  CAS  Google Scholar 

  7. D. F. Williams, Biomaterials 29, 2941 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  8. S. Heinemann, M. Gelinsky, and H. Worch, and T. Hanke, Orthopade 40, 761 (2011). https://doi.org/10.1007/s00132-011-1748-z

    Article  CAS  PubMed  Google Scholar 

  9. L. L. Hench, J. Biomed. Mater. Res 41, 511 (1998). https://doi.org/10.1002/(sici)1097-4636(19980915)41:4<511::aid-jbm1>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  10. A. F. Schilling, S. Filke, S. Brink, et al., Eur. J. Trauma 32, 107 (2006). https://doi.org/10.1007/s00068-006-6043-1

    Article  Google Scholar 

  11. J. A. Juhasz and S. M. Best, J. Mater. Sci. 47, 610 (2012). https://doi.org/10.1007/s10853-011-6063-x

    Article  CAS  Google Scholar 

  12. S. Chernousova and M. Epple, Adv. Biomater. Devices Med. 1, 74 (2014).

    Google Scholar 

  13. M. Vallet-Regí and J. M. González-Calbet, Prog. Solid State Chem. 32, 1 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  CAS  Google Scholar 

  14. V. Uskoković and D. P. Uskoković, J. Biomed. Mater. Res. Part B 96, 152 (2011). https://doi.org/10.1002/jbm.b.31746

    Article  CAS  Google Scholar 

  15. M. Neumann and M. Epple, Eur. J. Trauma 32, 125 (2006). https://doi.org/10.1007/s00068-006-6044-y

    Article  Google Scholar 

  16. D. Tadic and M. Epple, Biomaterials 25, 987 (2004). https://doi.org/10.1016/S0142-9612(03)00621-5

    Article  CAS  PubMed  Google Scholar 

  17. F. Tamimi, D. Le Nihouannena, D. C. Bassettet, et al., Acta Biomater. 7, 2678 (2011). https://doi.org/10.1016/j.actbio.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  18. J. Tao, Haihua Pan, Yaowu Zeng, et al., J. Phys. Chem. B 111, 13410 (2007). https://doi.org/10.1021/jp0732918

    Article  CAS  PubMed  Google Scholar 

  19. S. Dorozhkin, Acta Biomater. 6, 4457 (2010). https://doi.org/10.1016/j.actbio.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  20. S. Dorozhkin, Biomater. Sci. 9, 7748 (2021). https://doi.org/10.1039/D1BM01239H

    Article  CAS  PubMed  Google Scholar 

  21. S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Mater. Today 16, 496 (2013). https://doi.org/10.1016/j.mattod.2013.11.017

    Article  CAS  Google Scholar 

  22. Y. Georgalis, A. M. Kierzek, and W. Saenger, J. Phys. Chem. B Am. Chem. Soc. 104, 3405 (2000). https://doi.org/10.1021/jp000132e

    Article  CAS  Google Scholar 

  23. C. Combes and C. Rey, Acta Biomater. 6, 3362 (2010). https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  24. R. Gelli, M. Scudero, L. Gigli, et al., J. Colloid Interface Sci. 531, 681 (2018). https://doi.org/10.1016/j.jcis.2018.07.102

    Article  CAS  PubMed  Google Scholar 

  25. A. Hirsch, et al., Chem. Mater. Am. Chem. Soc. 26, 2934 (2014).

    CAS  Google Scholar 

  26. G. Kazakova, T. Safronova, D. Golubchikov, et al., Materials 14 (2021). https://doi.org/10.3390/ma14174857

  27. V. A. Morozov, A. A. Belik, R. N. Kotov, et al., Crystallorg. Rep. 45, 13 (2000). https://doi.org/10.1134/1.171129

    Article  Google Scholar 

  28. D. Lee and P. N. Kumta, Mater. Sci. Eng. C 30, 1313 (2010). https://doi.org/10.1016/j.msec.2010.05.009

    Article  CAS  Google Scholar 

  29. R. Z. Legeros, Calcium Phosphates in Oral Biology and Medicine (Karger, 1991).

    Google Scholar 

  30. A. La Fontaine, A. Zavgorodniy, H. Liu, et al., Sci. Adv. Am. Assoc. Adv. Sci. 2 (2016). https://doi.org/10.1126/sciadv.1601145

  31. J. Vecstaudza and J. Locs, Key Eng. Mater. 721, 172 (2017). https://doi.org/10.4028/www.scientific.net/KEM.721.172

    Article  Google Scholar 

  32. A. L. Boskey and A. S. Posner, J. Phys. Chem. 79, 2313 (1973).

    Article  Google Scholar 

  33. C. Holt, et al., Mater. Res. Bull. 23, 55 (1989).

    Article  Google Scholar 

  34. N. C. Blumenthal and A. S. Posner, Mater. Res. Bull. 7, 1181 (1972).

    Article  CAS  Google Scholar 

  35. OfirP. Bar-Yosef, R. Govrin-Lippman, N. Garti, et al., Cryst. Growth Des. 4, 177 (2004). https://doi.org/10.1021/cg034148g

    Article  CAS  Google Scholar 

  36. R. M. Smith, A. E. Martell, and R. J. Motekaitis, NIST Crititically Selected Stability Constants of Metal Complexes Database (NIST Standard Reference Database 46, Version 7.0. NIST, Gaithersburg, MD, USA, 2003).

  37. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd Ed. (John Wiley & Sons, New York, 1996).

    Google Scholar 

  38. A. C. Tas, J. Mater. Chem. B 1, 4511 (2013). https://doi.org/10.1039/c3tb20854k

    Article  CAS  PubMed  Google Scholar 

  39. V. M. Ievlev, S. V. Kannykin, A. V. Kostyuchenko, et al., Inorg. Mater. 56, 859 (2020). https://doi.org/10.1134/S0020168520080051

    Article  CAS  Google Scholar 

  40. A. G. Veresov, Cand. Sci. (Chem.) Dissertation, Moscow, 2003.

  41. D. S. Larionov, M. A. Kuzina, and P. V. Evdokimov, et al., Russ. J. Inorg. Chem. 65, 312 (2020). https://doi.org/10.1134/S0036023620030079

    Article  CAS  Google Scholar 

  42. V. I. Putlyaev, P. V. Evdokimov, T. V. Safronova, et al., Inorg. Mater. 53, 529 (2017). https://doi.org/10.1134/S0020168517050168

    Article  CAS  Google Scholar 

  43. M. Sadia, A. Sośnicka, B. Arafata, et al., Int. J. Pharm. 513, 659 (2016). https://doi.org/10.1016/j.ijpharm.2016.09.050

    Article  CAS  PubMed  Google Scholar 

  44. A. Tikhonov, P. Evdokimov, E. Klimashina, et al., J. Mech. Behav. Biomed. Mater. 110, 103922 (2020). https://doi.org/10.1016/j.jmbbm.2020.103922

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 19-19-00587. The results reported in the work were obtained using facility purchased due to expense of the Development Program for the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Golubchikov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, D.M., Golubchikov, D.O., Evdokimov, P.V. et al. Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing. Russ. J. Inorg. Chem. 67, 940–951 (2022). https://doi.org/10.1134/S0036023622070257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070257

Keywords:

Navigation