Skip to main content
Log in

Crystal Structure and Optical Properties of New Hybrid Halobismuthates of 2,2'-Bipyridinium Derivatives

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

New hybrid 2,2'-bipyridinium halobismuthates ([bipyH]+) (I and II), 7,8-dihydro-6H-dipyrido[1,2-a:2',1'-c][1,4]diazepine-5,9-diium ([bipyC3]2+) (III), 6,7,8,9-tetrahydrodipyrido[1,2-a:2',1'-c][1,4]diazocin-5,10-diium ([bipyC4]2+) (IV), and 1,1'-(pentanediyl)bis(2,2'-bipyridinium) ((bipyH)2C5]4+) (V) have been isolated and characterized by X-ray diffraction. The structure of I contains a monoprotonated cation 2,2'-bipyridinium and the isolated [Bi2Br10]4– anion. 2,2'-Bipyridinium bromobismuthate II contains a polymeric anion and is isostructural to the previously described iodobismuthate. Bromobismuthate III includes [BiBr6]3– anions and water molecules. Iodobismuthate [bipyC3]2[Bi2I10] (VI) is isostructural to IV. The structure of V contains [(bipyH)2C5]4+ cations and three types of anions: [Bi2Br10]4–, [BiBr6]3–, and Br. Compounds I, III, and VI have been isolated in pure form. The values of the optical band gap for them are 2.84, 2.88, and 2.11 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Mencel, P. Starynowicz, M. Siczek, et al., Dalton Trans. 48, 14829 (2019). https://doi.org/10.1039/c9dt02916h

    Article  CAS  PubMed  Google Scholar 

  2. R. Jakubas, A. Gagor, M. J. Winiarski, et al., Inorg. Chem. 59, 3417 (2020). https://doi.org/10.1021/acs.inorgchem.9b03193

    Article  CAS  PubMed  Google Scholar 

  3. M. Moskwa, G. Bator, M. Rok, et al., Dalton Trans. 47, 13507 (2018). https://doi.org/10.1039/c8dt03121e

    Article  CAS  PubMed  Google Scholar 

  4. Y. L. Wang, X. H. Chen, W. Shu, et al., J. Coord. Chem. 72, 573 (2019). https://doi.org/10.1080/00958972.2019.1570167

    Article  CAS  Google Scholar 

  5. S. Pandey, T. Chattopadhyay, S. Dev, et al., Polyhedron 179, 114335 (2020). https://doi.org/10.1016/j.poly.2019.114335

    Article  CAS  Google Scholar 

  6. P. Wang, W. W. Sheng, Z. R. Chen, et al., J. Clust. Sci. 32, 727 (2021). https://doi.org/10.1007/s10876-020-01829-0

    Article  CAS  Google Scholar 

  7. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, et al., Inorg. Chim. Acta 469, 32 (2018). https://doi.org/10.1016/j.ica.2017.08.058

    Article  CAS  Google Scholar 

  8. Y.-Y. Wang, L. Song, Z.-Q. Dai, et al., J. Solid State Chem. 304, 122611 (2021). https://doi.org/10.1016/j.jssc.2021.122611

    Article  CAS  Google Scholar 

  9. S. A. Adonin, M. N. Sokolov, and V. P. Fedin, Coord. Chem. Rev. 312, 1 (2016). https://doi.org/10.1016/j.ccr.2015.10.010

    Article  CAS  Google Scholar 

  10. P. A. Buikin, A. Y. Rudenko, A. B. Ilyukhin, et al., Russ. J. Coord. Chem. 46, 111 (2020). https://doi.org/10.1134/S1070328420020049

    Article  CAS  Google Scholar 

  11. P. A. Buikin, A. Y. Rudenko, A. B. Ilyukhin, et al., Russ. J. Inorg. Chem. 66, 482 (2021). https://doi.org/10.1134/S0036023621040057

    Article  CAS  Google Scholar 

  12. P. A. Buikin, A. B. Ilyukhin, V. K. Laurinavichyute, et al., Russ. J. Inorg. Chem. 66, 133 (2021). https://doi.org/10.1134/S0036023621020042

    Article  CAS  Google Scholar 

  13. V. V. Sharutin, I. V. Yegorova, N. N. Klepikov, et al., Russ. J. Inorg. Chem. 54, 52 (2009). https://doi.org/10.1134/S0036023609010124

    Article  Google Scholar 

  14. V. V. Sharutin, O. K. Sharutina, R. M. Khisamov, et al., Russ. J. Inorg. Chem. 62, 766 (2017). https://doi.org/10.1134/S0036023617060201

    Article  CAS  Google Scholar 

  15. H. Krautscheid, ZAAC 621, 2049 (1995). https://doi.org/10.1002/zaac.19956211212

    Article  CAS  Google Scholar 

  16. C. J. Carmalt, L. J. Farrugia, and N. C. Norman, Z. Naturforsch., Sect. B: J. Chem. Sci. 50, 1591 (1995). https://doi.org/10.1515/znb-1995-1104

    Article  CAS  Google Scholar 

  17. V. Y. Kotov, P. A. Buikin, A. B. Ilyukhin, et al., New J. Chem. 45, 18349 (2021). https://doi.org/10.1039/d1nj02390j

    Article  CAS  Google Scholar 

  18. A. M. Ganose, C. N. Savory, and D. O. Scanlon, Chem. Commun. 53, 20 (2017). https://doi.org/10.1039/c6cc06475b

    Article  CAS  Google Scholar 

  19. L. C. Lee, T. N. Huq, J. L. Macmanus-Driscoll, et al., APL Mater. 6 (2018). https://doi.org/10.1063/1.5029484

  20. O. Stroyuk, Beilstein J. Nanotechnol. 9, 2209 (2018). https://doi.org/10.3762/bjnano.9.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Waykar, A. Bhorde, S. Nair, et al., J. Phys. Chem. Solids 146, 109608 (2020). https://doi.org/10.1016/j.jpcs.2020.109608

    Article  CAS  Google Scholar 

  22. A. N. Usoltsev, M. Elshobaki, S. A. Adonin, et al., J. Mater. Chem. A 7, 5957 (2019). https://doi.org/10.1039/c8ta09204d

    Article  CAS  Google Scholar 

  23. S. Premkumar, D. Liu, Y. Zhang, et al., ACS Appl. Nano Mater. 3, 9141 (2020). https://doi.org/10.1021/acsanm.0c01787

    Article  CAS  Google Scholar 

  24. A. Vassilakopoulou, D. Papadatos, I. Zakouras, et al., J. Alloys Compd. 692, 589 (2017). https://doi.org/10.1016/j.jallcom.2016.09.076

    Article  CAS  Google Scholar 

  25. V. Y. Kotov, A. B. Ilyukhin, A. A. Korlyukov, et al., New J. Chem. 42, 6354 (2018). https://doi.org/10.1039/c7nj04948j

    Article  CAS  Google Scholar 

  26. S. A. Adonin, I. D. Gorokh, A. S. Novikov, et al., Chem. A Eur. J. 23, 15612 (2017). https://doi.org/10.1002/chem.201703747

    Article  CAS  Google Scholar 

  27. W. Bi, N. Leblanc, N. Mercier, et al., Chem. Mater. 21, 4099 (2009). https://doi.org/10.1021/cm9016003

    Article  CAS  Google Scholar 

  28. N. Leblanc, N. Mercier, L. Zorina, et al., J. Am. Chem. Soc. 133, 14924 (2011). https://doi.org/10.1021/ja206171s

    Article  CAS  PubMed  Google Scholar 

  29. Y. Chen, Z. Yang, C. X. Guo, et al., Eur. J. Inorg. Chem. 33, 5326 (2010). https://doi.org/10.1002/ejic.201000755

    Article  CAS  Google Scholar 

  30. A. Skorokhod, N. Mercier, M. Allain, et al., Inorg. Chem. 60, 17123 (2021). https://doi.org/10.1021/acs.inorgchem.1c02384

    Article  CAS  PubMed  Google Scholar 

  31. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, et al., Russ. J. Inorg. Chem. 61, 958 (2016). https://doi.org/10.1134/S0036023616080027

    Article  CAS  Google Scholar 

  32. G. A. Bowmaker, P. C. Junk, AaronM. Lee, et al., Aust. J. Chem. 51, 293 (1998). https://doi.org/10.1071/C97036

    Article  CAS  Google Scholar 

  33. I. W. H. Oswald, H. Ahn, and J. R. Neilson, Dalton Trans. 48, 16340 (2019). https://doi.org/10.1039/c9dt03207j

    Article  CAS  PubMed  Google Scholar 

  34. A. M. Goforth, M. A. Tershansy, M. D. Smith, et al., Acta Crystallogr., Sect. C 62, M381 (2019). https://doi.org/10.1107/S0108270106025972

    Article  CAS  Google Scholar 

  35. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, et al., Russ. J. Coord. Chem. 42, 695 (2016). https://doi.org/10.1134/S1070328416110014

    Article  CAS  Google Scholar 

  36. C. R. Groom, I. J. Bruno, M. P. Lightfoot, et al., Acta Crystallogr., Sect. B 72, 171 (2016). https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  37. F. D. Popp and D. K. Chesney, J. Heterocycl. Chem. 9, 1165 (1972). https://doi.org/10.1002/jhet.5570090541

  38. Bruker // Apex II 2009. P. Bruker AXS Inc.

  39. G. M. Sheldrick, Programs Scaling Absorpt. Correct. Area Detect. Data (1997).

  40. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  41. A. Coelho, Bruker AXS Gmb, No. 2009.

  42. P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931). http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf.

    Google Scholar 

  43. S. Balabanova, P. Buikin, A. Ilyukhin, et al., CSD Commun. (2021). https://doi.org/10.5517/ccdc.csd.cc298r1d

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment at the Center for Collective Use of the Physic Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry RAS, which operates with the support of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry RAS in the field of fundamental scientific research, and the Center for Collective Use of the Nesmeyanov Institute of Organoelement Compounds RAS.

Funding

The work was carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Buikin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanova, S.P., Buikin, P.A., Ilyukhin, A.B. et al. Crystal Structure and Optical Properties of New Hybrid Halobismuthates of 2,2'-Bipyridinium Derivatives. Russ. J. Inorg. Chem. 67, 1018–1024 (2022). https://doi.org/10.1134/S0036023622070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070038

Keywords:

Navigation