Skip to main content
Log in

Cadmium Modification of the Lithium-Rich Cathode Material Li1.2Ni0.133Mn0.534Co0.133O2

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A lithium-rich cathode material for lithium-ion batteries, Li1.2Ni0.133Mn0.534Co0.133O2, was synthesized by three methods. Cathode materials based on this compound in which cobalt was partially replaced by cadmium were obtained. The effects of preparation method and cadmium introduction method on the electrochemical characteristics of the materials were investigated. The oxides were obtained by co-precipitation in which cadmium was added either in the precursor preparation stage or in the stage of solid-state reaction of the precursor with the lithium source, or in the solvothermal synthesis. The presence of cadmium in the materials was proved by inductively coupled plasma mass spectrometry, powder X-ray diffraction, and electron probe microanalysis. The most part of cadmium in the modified materials existed as an oxide coating on the surface of the active material particles. The electrochemical testing of the materials in half-cells with a lithium anode showed that the sample with a more uniform coating obtained by adding cadmium during the precursor synthesis had better electrochemical characteristics than the pristine material (95% versus 84% reversibility by the 100th cycle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. M. Thackeray, S.-H. Kang, C. S. Johnson, et al., J. Mater. Chem. 17, 3112 (2007). https://doi.org/10.1039/b702425h

    Article  CAS  Google Scholar 

  2. M. Freire, N. V. Kosova, C. Jordy, et al., Nat. Mater. 15, 173 (2016). https://doi.org/10.1038/nmat4479

    Article  CAS  PubMed  Google Scholar 

  3. W. He, W. Guo, H. Wu, et al., Adv. Mater. 2005937 (2021). https://doi.org/10.1002/adma.202005937

  4. B. R. Long, J. R. Croy, J. S. Park, et al., J. Electrochem. Soc. 161, A2160 (2014). https://doi.org/10.1149/2.0681414jes

    Article  CAS  Google Scholar 

  5. K. A. Jarvis, Z. Deng, L. F. Allard, et al., Chem. Mater. 23, 3614 (2011). https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  6. S. SharifiAsl, J. Lu, K. Amine, et al., Adv. Energy Mater. 9, 1900551 (2019). https://doi.org/10.1002/aenm.201900551

  7. T. Li, X.-Z. Yuan, L. Zhang, et al., Electrochem. Energy Rev. 3, 43 (2020). https://doi.org/10.1007/s41918-019-00053-3

    Article  Google Scholar 

  8. X. Ji, Q. Xia, Y. Xu, et al., J. Power Sources 487, 229362 (2021). https://doi.org/10.1016/j.jpowsour.2020.229362

    Article  CAS  Google Scholar 

  9. T. R. Somo, T. E. Mabokela, D. M. Teffu, et al., Coatings 11, 744 (2021). https://doi.org/10.3390/coatings11070744

    Article  CAS  Google Scholar 

  10. A. Hebert and E. McCalla, Mater. Adv. 2, 3474 (2021). https://doi.org/10.1039/D1MA00081K

    Article  CAS  Google Scholar 

  11. L. S. Pechen, E. V. Makhonina, A. E. Medvedeva, et al., Russ. J. Inorg. Chem. 66, 777 (2021). https://doi.org/10.1134/S0036023621050144

    Article  CAS  Google Scholar 

  12. D. P. Opra, S. V. Gnedenkov, S. A. Sinebryukhov, et al., Russ. J. Inorg. Chem. 64, 680 (2019). https://doi.org/10.1134/S0036023619050140

    Article  CAS  Google Scholar 

  13. G. D. Nipan, M. N. Smirnova, D. Y. Kornilov, et al., Russ. J. Inorg. Chem. 65, 573 (2020). https://doi.org/10.1134/S0036023620040130

    Article  CAS  Google Scholar 

  14. X. Li, J. Zheng, M. H. Engelhard, et al., ACS Appl. Mater. Interfaces 10, 2469 (2018). https://doi.org/10.1021/acsami.7b15117

    Article  CAS  PubMed  Google Scholar 

  15. G. Kobayashi, Y. Irii, F. Matsumoto, et al., J. Power Sources 303, 250 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.014

    Article  CAS  Google Scholar 

  16. S. Maiti, H. Sclar, R. Sharma, et al., Adv. Funct. Mater. 31, 2008083 (2021). https://doi.org/10.1002/adfm.202008083

    Article  CAS  Google Scholar 

  17. J.-Z. Kong, H.-F. Zhai, X. Qian, et al., J. Alloys Compd. 694, 848 (2017). https://doi.org/10.1016/j.jallcom.2016.10.045

    Article  CAS  Google Scholar 

  18. Z. Wang, E. Liu, L. Guo, et al., Surf. Coatings Technol. 235, 570 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.026

    Article  CAS  Google Scholar 

  19. J.-Z. Kong, S.-S. Wang, G.-A. Tai, et al., J. Alloys Compd. 657, 593 (2016). https://doi.org/10.1016/j.jallcom.2015.10.187

    Article  CAS  Google Scholar 

  20. F. Wu, X. Zhang, T. Zhao, et al., ACS Appl. Mater. Interfaces 7, 3773 (2015). https://doi.org/10.1021/am508579r

    Article  CAS  PubMed  Google Scholar 

  21. S. H. Lee, B. K. Koo, J.-C. Kim, et al., J. Power Sources 184, 276 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.091

    Article  CAS  Google Scholar 

  22. J. Zheng, M. Gu, J. Xiao, et al., Chem. Mater. 26, 6320 (2014). https://doi.org/10.1021/cm502071h

    Article  CAS  Google Scholar 

  23. M. Li, H. Wang, L. Zhao, et al., J. Solid State Chem. 272, 38 (2019). https://doi.org/10.1016/j.jssc.2019.01.022

    Article  CAS  Google Scholar 

  24. X. Liu, T. Huang, and A. Yu, Electrochim. Acta 163, 82 (2015). https://doi.org/10.1016/j.electacta.2015.02.155

    Article  CAS  Google Scholar 

  25. E. Hu, S.-M. Bak, Y. Liu, et al., Adv. Energy Mater. 6, 1501662 (2016). https://doi.org/10.1002/aenm.201501662

    Article  CAS  Google Scholar 

  26. W. Yan, Y. Xie, J. Jiang, et al., ACS Sustain. Chem. Eng. 6, 4625 (2018). https://doi.org/10.1021/acssuschemeng.7b03634

    Article  CAS  Google Scholar 

  27. P. K. Nayak, J. Grinblat, M. Levi, et al., Adv. Energy Mater. 6, 1502398 (2016). https://doi.org/10.1002/aenm.201502398

    Article  CAS  Google Scholar 

  28. B. Yue, X. Wang, J. Wang, et al., RSC Adv. 8, 4112 (2018). https://doi.org/10.1039/C7RA12705G

    Article  CAS  Google Scholar 

  29. K. C. Kam, A. Mehta, J. T. Heron, et al., J. Electrochem. Soc. 159, A1383 (2012). https://doi.org/10.1149/2.060208jes

    Article  CAS  Google Scholar 

  30. Y. Lu, M. Pang, S. Shi, et al., Sci. Rep. 8, 2981 (2018). https://doi.org/10.1038/s41598-018-21345-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Sathiya, A. M. Abakumov, D. Foix, et al., Nat. Mater. 14, 230 (2015). https://doi.org/10.1038/nmat4137

    Article  CAS  PubMed  Google Scholar 

  32. S. Tamilarasan, D. Mukherjee, S. Sampath, et al., Solid State Ionics 297, 49 (2016). https://doi.org/10.1016/j.ssi.2016.10.003

    Article  CAS  Google Scholar 

  33. S. Valanarasu, R. Chandramohan, J. Thirumalai, et al., J. Sci. Res. 2, 443 (2010). https://doi.org/10.3329/jsr.v2i3.3877

    Article  CAS  Google Scholar 

  34. Y. Chen, Y. Li, S. Tang, et al., J. Power Sources 395, 403 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.088

    Article  CAS  Google Scholar 

  35. X.-L. Yang, G. Peng, L.-L. Zhang, et al., J. Electrochem. Soc. 159, A2096 (2012). https://doi.org/10.1149/2.014301jes

    Article  CAS  Google Scholar 

  36. L.-L. Zhang, S. Duan, X.-L. Yang, et al., Sci. Rep. 4, 5064 (2014). https://doi.org/10.1038/srep05064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Li, S. Wang, Y. Chen, et al., Mater. Chem. Phys. 240, 122029 (2020). https://doi.org/10.1016/j.matchemphys.2019.122029

    Article  CAS  Google Scholar 

  38. G. Chen, J. An, Y. Meng, et al., Nano Energy 57, 157 (2019). https://doi.org/10.1016/j.nanoen.2018.12.049

    Article  CAS  Google Scholar 

  39. E. V. Makhonina, L. S. Maslennikova, V. V. Volkov, et al., Appl. Surf. Sci. 474, 25 (2019). https://doi.org/10.1016/j.apsusc.2018.07.159

    Article  CAS  Google Scholar 

  40. L. S. Pechen’, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. J. Inorg. Chem. 63, 1534 (2018). https://doi.org/10.1134/S0036023618120173

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out using the equipment of the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (project no. 20-13-00423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Medvedeva or E. V. Makhonina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, A.E., Makhonina, E.V., Pechen, L.S. et al. Cadmium Modification of the Lithium-Rich Cathode Material Li1.2Ni0.133Mn0.534Co0.133O2. Russ. J. Inorg. Chem. 67, 952–962 (2022). https://doi.org/10.1134/S0036023622070154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070154

Keywords:

Navigation