Skip to main content
Log in

Assessing Genetic Diversity of Wild Populations and Different Color Varieties for Genetic Improvement of Siamese Fighting Fish Betta splendens in Thailand

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

To establish sustainable resources and founder populations for genetic improvement of the Siamese fighting fish Betta splendens, genetic diversity in wild and hatchery stocks was examined using mitochondrial (mt) DNA genes cytochrome b (cytb), 16S ribosomal DNA (16S rDNA), and cytochrome oxidase subunit I (COI), and eight microsatellite loci. Based on mtDNA sequences, restrictive levels of polymorphism (0, 3, and 1 substitutions) were observed in this study. For analysis of microsatellites, fluorescent multiplex PCR was developed, and subsequently identifying moderate levels of observed (Ho = 0.4488) and expected (He = 0.6627) heterozygosities and a high number of alleles per locus (15.125 alleles) for overall samples. Comparison of Siamese fighting fish from different sources revealed large genetic differences between pairs of farmed fish (eight groups) and between wild (three geographic locations) and farmed fish (P < 0.0031 following Bonferroni correction). This suggested limited exchanges of genetic resources between commercial farms. When different color varieties of B. splendens were compared, large genetic distances and significant FST estimates and genetic heterogeneity were found (P < 0.0031). Effective population sizes (Ne) were estimated and two farms (NP2-2BS and BK1-4BS) showed Ne greater than 10. Among color varieties, Multi-colors and Blue revealed reasonable Ne (large and 27.9), but lower Ne values (3.6–8.4) were found for the remaining color varieties. These results indicate an urgent need for the establishment of gene pool resources of B. splendens for effective genetic improvement of Siamese fighting fish in Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Phelps SR (1980) Loss of genetic variation in a hatchery stock of cutthroat trout. Trans Am Fish Soc 109:537–543

    Article  Google Scholar 

  • Allendorf FW, Ryman N (1987) Genetic management of hatchery stocks. In: Ryman N, Utter F (eds) Population genetics and fishery management. Washington Sea Grant Program, University of Washington Press, Seattle

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Avise JC (1994) Molecular Markers Natural History and Evolution. Chapman and Hall, New York

    Book  Google Scholar 

  • Birky CW, Fuerst P Jr, Maruyama T (1989) Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627

    Article  Google Scholar 

  • Chailertrit V, Swatdipong A, Peyachoknagul S, Salaenoi J, Srikulnath K (2014) Isolation and characterization of novel microsatellite markers from Siamese fighting fish (Betta splendens, Osphronemidae, Anabantoidei) and their transferability to related species, B. smaragdina and B. imbellis. Genet Mol Res 13:7157–7162

    Article  CAS  Google Scholar 

  • David L, Rothbard S, Rubinstein I, Katzman H, Hulata G, Hillel J, Lavi U (2004) Aspects of red and black color inheritance in the Japanese ornamental (Koi) carp (Cyprinus carpio L.). Aquaculture 233:129–147

    Article  Google Scholar 

  • Department of Fisheries (2016) Imported and exported items of ornamental aquatic species at Suvarnabhumi Airport, fiscal year 2016. Division of Aquatic Animal and Production Control, Department of Fisheries

  • Dixon TJ, Coman GJ, Arnold SJ, Sellars MJ, Lyons RE, Dierens L, Preston NP, Li Y (2008) Shifts in genetic diversity during domestication of black tiger shrimp, Penaeus monodon, monitored using two multiplexed microsatellite systems. Aquaculture 283:1–6

    Article  CAS  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evans B, Bartletta BJ, Sweijde N, Cooke P, Elliotta NG (2004) Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture 233:109–127

    Article  Google Scholar 

  • Fujii R (1993) Cytophysiology of fish chromatophores. In: Jeon KW, Friedlander M, Jarvik J (eds) International review of cytology: a survey of cell biology, vol 143. Academic Press, San Diego, pp 191–255

    Chapter  Google Scholar 

  • Gjedrem T (2005) Selection and breeding programs in aquaculture. Springer, Dordrecht

    Book  Google Scholar 

  • Goudet J (2002) FSTAT version 2.9.3.2. A program to estimate and test gene diversities and fixation indices. http://www.unil.ch/izea/softwares/fstat.html.

  • Goyard E, Arnaud S, Vonau V, Bishoff V, Mouchel O, Pham D, Wyban J, Boudry P, Aquacop, (2003) Residual genetic variability in domesticated populations of the Pacific blue shrimp (Litopenaeus stylirostris) of New Caledonia, French Polynesia and Hawaii and some management recommendations. Aquat Living Resour 16:501–508

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  Google Scholar 

  • Hara M, Sekino M (2007) Genetic differences between hatchery stocks and natural populations in Pacific abalone (Haliotis discus) estimated using microsatellite DNA markers. Mar Biotechnol 9:74–81

    Article  CAS  Google Scholar 

  • Khamnamtong B, Klinbunga S, Menasveta P (2009) Genetic diversity and geographic differentiation of the giant tiger shrimp (Penaeus monodon) in Thailand analyzed by mitochondrial COI sequences. Biochem Genet 47:42–55

    Article  CAS  Google Scholar 

  • Khoo G, Loh EYF, Lim TM, Phang VPE (1997) Genetic variation in different varieties of Siamese fighting fish using isoelectric focusing of sarcoplasmic proteins. Aquac Inter 5:537–549

    Article  Google Scholar 

  • Khoo G, Lim TM, Phang VPE (2012) Ultrastructure of erythrophores and xanthophores of the Siamese fighting fish Betta splendens. Israeli J Aquac 64:20620

    Google Scholar 

  • Khoo G, Lim TM, Phang VPE (2014) Cellular basis of metallic iridescence in the Siamese fighting fish, Betta splendens. The Israeli Journal of Aquaculture. - Bamidgeh, IJA:65.2013.988

  • Kowasupat C, Panijpan B, Ruenwongsa P, Jeenthong T (2012a) Betta siamorientalis, a new species of bubble-nest building fighting fish (Teleostei: Osphronemidae) from eastern Thailand. Vertebr Zool 62:387–397

    Google Scholar 

  • Kowasupat C, Panijpan B, Ruenwongsa P, Sriwattanarothai N (2012b) Betta mahachaiensis, a new species of bubble-nesting fighting fish (Teleostei: Osphronemidae) from Samut Sakhon Province, Thailand. Zootaxa 3522:49–60

    Article  Google Scholar 

  • Kowasupat C, Panijpan B, Laosinchai P, Ruenwongsa P, Phongdara A, Wanna W, Senapin S, Phiwsaiya K (2014) Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences. Meta Gene 2:83–95

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Molecular evolutionary genetics analysis 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Li Q, Park C, Endo T, Kijima A (2004) Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture 235:207–222

    Article  CAS  Google Scholar 

  • Liu ZF, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37

    Article  CAS  Google Scholar 

  • Lucas GA (1968) A Study of Variation in the Siamese Fighting Fish, Betta splendens, with Emphasis on Colour Mutants and the Problem of Sex Determination. PhD thesis, Iowa Ames State University, Iowa, 201 pp

  • Meejui O, Sukmanomon S, Na-Nakorn U (2005) Allozyme revealed substantial genetic diversity between hatchery stocks of Siamese fighting fish, Betta splendens, in the province of Nakorn Pathom, Thailand. Aquaculture 250:110–119

    Article  CAS  Google Scholar 

  • Miller MP (1997) TFPGA-Tools for population genetic analyses, vol 1.3. Northern Arizona University, Flagstaff

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 23:341–369

    CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Ninwichian P, Klinbunga S (2020) Population genetics of sandfish (Holothuria scabra) in the Andaman sea, Thailand inferred from 12S rDNA and microsatellite polymorphism. Reg Stud Mar Sci. https://doi.org/10.1016/j.rsma.2020.101189

    Article  Google Scholar 

  • Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1(3):462–474

    Article  Google Scholar 

  • Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180:247–264

    Article  Google Scholar 

  • O’Connell M, Dillon MC, Wright JM, Bentzen P, Merkouris S, Seeb J (1998) Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation. J Fish Biol 53:150–163

    Article  Google Scholar 

  • O’Reilly P, Wright JM (1995) The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J Fish Biol 47:29–55

    Article  Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (2002) The Simple Fool’s Guide to PCR version 2.0. Department of Zoology and Kewalo Marine Laboratory. University of Hawaiim, Honolulu

    Google Scholar 

  • Pan YW, Chou HH, You EM, Yu HT (2004) Isolation and characterization of 23 polymorphic microsatellite markers for diversity and stock analysis in tiger shrimp (Penaeus monodon). Mol Ecol Notes 4:345–347

    Article  CAS  Google Scholar 

  • Panijpan P, Sriwattanarothai N, Laosinchai P (2020) Wild Betta fighting fish species in Thailand and other Southeast Asian countries. Sci Asia 46:1–10

    Article  Google Scholar 

  • Prakhongcheep O, Muangmai N, Peyachoknagul S, Srikulnath K (2018) Complete mitochondrial genome of mouthbrooding fighting fish (Betta pi) compared with bubble nesting fighting fish (B. splendens). Mitochondrial DNA Part B 3:6–8

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): a population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (2008) genepop: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Ruber L, Britz R, Tan HH, Ng PKL, Zardoya R (2004) Evolution of mouthbrooding and life-history correlates in the fighting fish genus Betta. Evolution 58:799–813

    Google Scholar 

  • Sbordoni V, De Matthaeis E, Cobolli-Sbordoni M, La Rosa G, Mattoccia M (1986) Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda). Aquaculture 57:239–251

    Article  Google Scholar 

  • Selvamani MJP, Degnan SM, Paetkau D, Degnan BM (2000) Highly polymorphic microsatellite loci in the Heron Reef population of the tropical abalone Haliotis asinina. Mol Ecol 9:1184–1186

    Article  CAS  Google Scholar 

  • Selvamani MJP, Degnan SM, Degnan BM (2001) Microsatellite genotyping of individual abalone larvae: parentage assignment in aquaculture. Mar Biotechnol 3:478–485

    Article  CAS  Google Scholar 

  • Shikano T, Taniguchi N (2001) Relationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in guppy (Poecilia reticulata). Aquaculture 209:77–90

    Article  Google Scholar 

  • Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Pongsanarm T, Panthum T, Ariyaraphong N, Subpayakom N, Dokkaew S, Muangmai N, Duengkae P, Srikulnath K (2020) Complete mitochondrial genome of Mahachai betta, Betta mahachaiensis (Teleostei: Osphronemidae). Mitochondrial DNA Part B 5:3077–3079

    Article  Google Scholar 

  • Song YN, Xiao GB, Li JT (2016) Complete mitochondrial genome of the Siamese fighting fish (Betta splendens). Mitochondrial DNA A DNA Mapp Seq Anal 27:4580–4581

    CAS  Google Scholar 

  • Sriwattanarothai N, Steinke D, Ruenwongsa P, Hanner R, Panijpan B (2010) Molecular and morphological evidence supports the species status of the Mahachai fighter Betta sp. Mahachai and reveals new species of Betta from Thailand. J Fish Biol 77:414–424

    Article  CAS  Google Scholar 

  • Staelens J, Rombaut D, Vercauteren I, Argue B, Benzie J, Vuylsteke M (2008) High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon). Genetics 179:917–925

    Article  CAS  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol Biol Evol 27:747–752

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence weighting, position-specific gap penalties and weight metric choices. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wallbrunn HM (1957) Genetics of the Siamese fighting fish, Betta splendens. Genetics 43:281–298

    Google Scholar 

  • Watson C, DiMaggio M, Hill J, Tuckett Q, Yanong R (2019) Evolution, culture, and care for Betta splendens. Document No. FA212, School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, UF/ IFAS Extension

  • Weir BS, Cockerham CC (1984) Estimation F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  Google Scholar 

  • Yang W, Wang Y, Zhu C, Li G, Huang H, Chen H (2018) De novo transcriptomic characterization of Betta splendens for identifying sex-biased genes potentially involved in aggressive behavior modulation and EST-SSR maker development. Biorxiv. https://doi.org/10.1101/355354

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agricultural Research Development Agency (ARDA), Thailand, project nos. CRP6105022080 and CRP6405030990. We thank the National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA for providing research facilities.

Funding

Agricultural Research Development Agency, CRP6105022080, Sirawut Klinbunga.

Author information

Authors and Affiliations

Authors

Contributions

SP and PR carried out the experiments on microsatellite and mitochondrial DNA analysis. ST and SJ performed sequence analysis and allele scoring. BK designed the experiments, contributed to the development of microsatellite markers and wrote the first draft of the manuscript. PN performed analysis of population genetic data. SK supervised the project and edited the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Sirawut Klinbunga.

Ethics declarations

Conflict of interest

SP, PR, ST, SJ, PN, SK, and BK declared that they have no conflict of interest on this research.

Ethical Approval

Experiments were carried out in accordance with regulations for animal care and use for scientific research of the National Center for Genetic Engineering and Biotechnology (BIOTEC) Animal Welfare Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasertlux, S., Rongmung, P., Tang, S. et al. Assessing Genetic Diversity of Wild Populations and Different Color Varieties for Genetic Improvement of Siamese Fighting Fish Betta splendens in Thailand. Biochem Genet 61, 258–278 (2023). https://doi.org/10.1007/s10528-022-10260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10260-1

Keywords

Navigation