Skip to main content
Log in

Amphotericin B in Pediatrics: Analysis by Age Stratification Suggests a Greater Chance of Adverse Events from 13 Months of Age Onwards

  • Original Research Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Background and Objective

Amphotericin B deoxycholate (AMB-D) remains an antifungal agent with great therapeutic value in pediatric patients. The currrent consensus is that its use in neonates is safer than in older children. However, childhood presents different periods of development that deserve to be evaluated more precisely. Our goal was to assess the usage profile of AMB-D in stratified pediatric age groups, adapted according to the National Institute of Child Health and Human Development classification.

Methods

This retrospective cross-sectional observational study was conducted at a Brazilian tertiary children’s hospital between January 2014 and December 2019.  Data of patients who received at least two doses of intravenous AMB-D while hospitalized were extracted from electronic health files. Information on patient demographics, underlying diseases and comorbidities, laboratory examinations, fungal infection diagnosis, and AMB-D use were gathered following specific criteria. Nonparametric tests were applied, such as the chi-square test to compare proportions and Fisher’s exact test to assess the association between categorical variables or contingency tables.

Results

One hundred and twenty-seven (127) medical records were stratified as preterm neonatal (birth <37 weeks postmenstrual age), term neonatal (birth–27 days), infants (28 days–12 months), toddlers (13 months–2 years), early childhood (3–5 years), middle childhood (6–11 years), and early adolescence (12–18 years). The criteria for the indication of AMB-D followed empirical use as the main indication (n = 74; 58.26%), proven and probable fungal infection (n = 39; 30.71%), and medical suspicion (n = 14; 11.02%). Candida spp. was the main etiologic agent isolated in cultures, with the highest frequency of C. albicans (n = 18; 40%), followed by Candida parapsilosis (n = 14; 31.11%), and Candida tropicalis (n = 6; 13.33%). Very few acute infusion-related adverse effects were observed during the administration of AMB-D in pediatric patients. We found an unfavorable impact of AMB-D use in patients from 13 months of age onwards suggesting this group as a turning point for a greater chance of adverse events, and not soon after the neonatal period.

Conclusions

Clinical or observational studies based on age stratification are essential to accurately elucidate whether potentially toxic drugs can be used safely in the pediatric population. Our search for a turning point was shown to contribute to the accuracy of the study, as it provided data on the impact of D-AMB in specific pediatric age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1

Similar content being viewed by others

References

  1. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19(12):e405–21. https://doi.org/10.1016/s1473-3099(19)30312-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thompson GR, Le T, Chindamporn A, Kauffman CA, Schwartz I, Alastruey-Izquierdo A, et al. Global guideline for the diagnosis and management of the endemic mycoses 2020. 2020. https://www.ecmm.info/news/global-guideline-for-the-diagnosis-and-management-of-the-endemic-mycoses-an-initiative-of-the-ecmm-with-tbd/. Accessed 2 Sep 2020.

  3. Groll AH, Pana D, Lanternier F, Mesini A, Ammann RA, Averbuch D, et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021;22(6):e254–69. https://doi.org/10.1016/s1470-2045(20)30723-3.

  4. Noni M, Stathi A, Vaki I, Velegraki A, Zachariadou L, Michos A. Changing epidemiology of invasive candidiasis in children during a 10-year period. J Fungi (Basel). 2019;5(1):19. https://doi.org/10.3390/jof5010019.

    Article  CAS  PubMed Central  Google Scholar 

  5. Olivier-Gougenheim L, Rama N, Dupont D, Saultier P, Leverger G, AbouChahla W, et al. Invasive fungal infections in immunocompromised children: novel insight following a national study. J Pediatr. 2021;236:204–10. https://doi.org/10.1016/j.jpeds.2021.05.016.

    Article  PubMed  Google Scholar 

  6. Steinbach WJ. Epidemiology of invasive fungal infections in neonates and children. Clin Microbiol Infect. 2010;16(9):1321–7. https://doi.org/10.1111/j.1469-0691.2010.03288.x.

    Article  CAS  PubMed  Google Scholar 

  7. Walsh TJ, Katragkou A, Chen T, Salvatore CM, Roilides E. Invasive candidiasis in infants and children: recent advances in epidemiology, diagnosis, and treatment. J Fungi (Basel). 2019;5(1):11. https://doi.org/10.3390/jof5010011.

    Article  CAS  PubMed Central  Google Scholar 

  8. França JC, Ribeiro CE, Queiroz-Telles F. Candidemia in a Brazilian tertiary care hospital: incidence, frequency of different species, risk factors and antifungal susceptibility. Rev Soc Bras Med Trop. 2008;41(1):23–8. https://doi.org/10.1590/s0037-86822008000100005.

    Article  PubMed  Google Scholar 

  9. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis. 2005;41(9):1232–9. https://doi.org/10.1086/496922.

    Article  PubMed  Google Scholar 

  10. Hsu JF, Lai MY, Lee CW, Chu SM, Wu IH, Huang HR, et al. Comparison of the incidence, clinical features and outcomes of invasive candidiasis in children and neonates. BMC Infect Dis. 2018;18(1):194. https://doi.org/10.1186/s12879-018-3100-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergold AM, Georgiadis S. New antifungic drugs: a review. Visão Acadêmica. 2004;5(2):13.

  12. Sidrim JJC, Rocha MFG. Micologia médica à luz de autores contemporâneos. 1st ed. Rio de janeiro: Guanabara Koogan; 2004: p. 396.

  13. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–7. https://doi.org/10.1016/j.riam.2009.06.003.

    Article  PubMed  Google Scholar 

  14. Shoham S. Infusion related reaction. Infusion related reaction: an overview. ScienceDirect Topics. 2022. https://www.sciencedirect.com/topics/medicine-and-dentistry/infusion-related-reaction. Accessed 17 May 2022.

  15. Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021;10(1):115–47. https://doi.org/10.1007/s40121-020-00382-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012;18:38–52. https://doi.org/10.1111/1469-0691.12040.

    Article  CAS  PubMed  Google Scholar 

  17. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1-50. https://doi.org/10.1093/cid/civ933.

    Article  PubMed  Google Scholar 

  18. Andrew EC, Curtis N, Coghlan B, Cranswick N, Gwee A. Adverse effects of amphotericin B in children; a retrospective comparison of conventional and liposomal formulations. Br J Clin Pharmacol. 2018;84(5):1006–12. https://doi.org/10.1111/bcp.13521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7. https://doi.org/10.1016/s0022-3476(05)82674-5.

    Article  CAS  PubMed  Google Scholar 

  20. Benjamin DK Jr, Kaufman DA, Hope WW, Smith PB, Arrieta A, Manzoni P, et al. A phase 3 study of micafungin versus amphotericin B deoxycholate in infants with invasive candidiasis. Pediatr Infect Dis J. 2018;37(10):992–8. https://doi.org/10.1097/inf.0000000000001996.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gray JA, Kavlock RJ. Pharmacologic probing of amphotericin B-induced renal dysfunction in the neonatal rat. Toxicol Appl Pharmacol. 1988;93(3):360–8. https://doi.org/10.1016/0041-008X(88)90038-5.

    Article  CAS  PubMed  Google Scholar 

  22. Koren G, Lau A, Kenyon CF, Kroppert D, Klein J. Clinical course and pharmacokinetics following a massive overdose of amphotericin B in a neonate. J Toxicol Clin Toxicol. 1990;28(3):371–8. https://doi.org/10.3109/15563659008994438.

    Article  CAS  PubMed  Google Scholar 

  23. Silver C, Rostas S. Comprehensive drug utilization review in neonates: liposomal amphotericin B. J Pharm Pharmacol. 2018;70(3):328–34. https://doi.org/10.1111/jphp.12878. (Epub 2018/01/25).

  24. Starke JR, Mason EO Jr, Kramer WG, Kaplan SL. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis. 1987;155(4):766–74. https://doi.org/10.1093/infdis/155.4.766.

    Article  CAS  PubMed  Google Scholar 

  25. Turkova A, Roilides E, Sharland M. Amphotericin B in neonates: deoxycholate or lipid formulation as first-line therapy: is there a ‘right’ choice? Curr Opin Infect Dis. 2011;24(2):163–71. https://doi.org/10.1097/QCO.0b013e328343614e.

    Article  CAS  PubMed  Google Scholar 

  26. Baley JE, Kliegman RM, Fanaroff AA. Disseminated fungal infections in very low-birth-weight infants: clinical manifestations and epidemiology. Pediatrics. 1984;73(2):144–52.

    Article  CAS  Google Scholar 

  27. Faix RG. Systemic Candida infections in infants in intensive care nurseries: high incidence of central nervous system involvement. J Pediatr. 1984;105(4):616–22. https://doi.org/10.1016/s0022-3476(84)80433-3.

    Article  CAS  PubMed  Google Scholar 

  28. Turner RB, Donowitz LG, Hendley JO. Consequences of candidemia for pediatric patients. Am J Dis Child. 1985;139(2):178–80. https://doi.org/10.1001/archpedi.1985.02140040080032.

    Article  CAS  PubMed  Google Scholar 

  29. Wilson R, Feldman S. Toxicity of amphotericin b in children with cancer. Am J Dis Child. 1979;133(7):731–4. https://doi.org/10.1001/archpedi.1979.02130070067014.

    Article  CAS  PubMed  Google Scholar 

  30. Williams K, Thomson D, Seto I, Contopoulos-Ioannidis DG, Ioannidis JP, Curtis S, et al. Standard 6: age groups for pediatric trials. Pediatrics. 2012;129(Suppl. 3):S153–60. https://doi.org/10.1542/peds.2012-0055I.

    Article  PubMed  Google Scholar 

  31. Harris P, Taylor R, Thielke R, Payne J, Gonzalez N, Conde J. A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:337–81.

    Article  Google Scholar 

  32. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95: 103208. https://doi.org/10.1016/j.jbi.2019.103208.

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. https://doi.org/10.1086/588660.

    Article  PubMed  Google Scholar 

  34. Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2019;71(6):1367–76. https://doi.org/10.1093/cid/ciz1008.

    Article  PubMed Central  Google Scholar 

  35. Ministério da Saúde Brasil. Secretaria de Assistência à Saúde. Manual Brasileiro de acreditação hospitalar/secretaria de assistência à saúde. In: 3rd ed. rev. Rio de Janiero: Ministério da Saúde; 2002.

  36. Cruz, Péricles Góes da (Coord.) Manual para organizações prestadoras de serviço de saúde—OPSS: roteiro de construção do manual brasileiro de acreditação ONA 2022/Coordenação Científica: Péricles Góes da Cruz; Gilvane Lolato. Edição especial. Brasília: ONA, 2021.93 p. il.; 21x29,7 cm. 2022.

  37. Team RC. R: a language and environment for statistical computing. 4.1.0 edition. Vienna: R Foundation for Statistical Computing; 2021.

  38. IBM Corporation. SPSS Statistics for Windows. 25.0 ed. Armonk (NY): IBM Corporation; 2021.

  39. MedCalc Software Ltd. Comparison of proportions calculator. 20.027 ed. Ostend: MedCalc Software Ltd.; 2022.

  40. Microsoft Corporation. Microsoft Excel. 16.0 ed. Redmond (WA): Microsoft Corporation; 2019.

  41. Nyhan WL, Shirkey HC, Cherry JD, Lloyd CA, Quilty JF, Laskowski LF. Amphotericin B therapy in children: a review of the literature and a case report. J Pediatr. 1969;75(6):1063–9. https://doi.org/10.1016/S0022-3476(69)80350-1.

    Article  Google Scholar 

  42. Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench. 2012;5(2):79–83.

    PubMed  PubMed Central  Google Scholar 

  43. Bes DF, Rosanova MT, Sberna N, Arrizurieta E. Deoxycholate amphotericin B and nephrotoxicity in the pediatric setting. Pediatr Infect Dis J. 2014;33(8):e198-206. https://doi.org/10.1097/inf.0000000000000299.

    Article  PubMed  Google Scholar 

  44. Groll AH, Castagnola E, Cesaro S, Dalle JH, Engelhard D, Hope W, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014;15(8):e327–40. https://doi.org/10.1016/s1470-2045(14)70017-8.

  45. Butler KM, Rench MA, Baker CJ. Amphotericin B as a single agent in the treatment of systemic candidiasis in neonates. Pediatr Infect Dis J. 1990;9(1):51–6. https://doi.org/10.1097/00006454-199001000-00012.

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez M, Moylett EH, Noyola DE, Baker CJ. Candidal meningitis in neonates: a 10-year review. Clin Infect Dis. 2000;31(2):458–63. https://doi.org/10.1086/313973.

    Article  CAS  PubMed  Google Scholar 

  47. Glick C, Graves GR, Feldman S. Neonatal fungemia and amphotericin B. South Med J. 1993;86(12):1368–71. https://doi.org/10.1097/00007611-199312000-00009.

    Article  CAS  PubMed  Google Scholar 

  48. Holler B, Omar SA, Farid MD, Patterson MJ. Effects of fluid and electrolyte management on amphotericin B-induced nephrotoxicity among extremely low birth weight infants. Pediatrics. 2004;113(6):e608–16. https://doi.org/10.1542/peds.113.6.e608.

    Article  PubMed  Google Scholar 

  49. Kingo AR, Smyth JA, Waisman D. Lack of evidence of amphotericin B toxicity in very low birth weight infants treated for systemic candidiasis. Pediatr Infect Dis J. 1997;16(10):1002–3. https://doi.org/10.1097/00006454-199710000-00020.

    Article  CAS  PubMed  Google Scholar 

  50. Jeon GW, Koo SH, Lee JH, Hwang JH, Kim SS, Lee EK, et al. A comparison of Am Bisome to amphotericin B for treatment of systemic candidiasis in very low birth weight infants. Yonsei Med J. 2007;48(4):619–26. https://doi.org/10.3349/ymj.2007.48.4.619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le J, Adler-Shohet FC, Nguyen C, Lieberman JM. Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J. 2009;28(12):1061–3. https://doi.org/10.1097/INF.0b013e3181af6201.

    Article  PubMed  Google Scholar 

  52. Turcu R, Patterson MJ, Omar S. Influence of sodium intake on amphotericin B-induced nephrotoxicity among extremely premature infants. Pediatr Nephrol. 2009;24(3):497–505. https://doi.org/10.1007/s00467-008-1050-4.

    Article  PubMed  Google Scholar 

  53. Pana ZD, Kougia V, Roilides E. Therapeutic strategies for invasive fungal infections in neonatal and pediatric patients: an update. Expert Opin Pharmacother. 2015;16(5):693–710. https://doi.org/10.1517/14656566.2015.1013936.

    Article  CAS  PubMed  Google Scholar 

  54. Driessen M, Ellis JB, Cooper PA, Wainer S, Muwazi F, Hahn D, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. Pediatr Infect Dis J. 1996;15(12):1107–12. https://doi.org/10.1097/00006454-199612000-00011.

    Article  CAS  PubMed  Google Scholar 

  55. Linder N, Klinger G, Shalit I, Levy I, Ashkenazi S, Haski G, Levit O, Sirota L. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. J Antimicrob Chemother. 2003;52(4):663–7. https://doi.org/10.1093/jac/dkg419.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francelise Bridi Cavassin.

Ethics declarations

Funding

The authors received no specific funding for this work.

Conflict of Interest/Competing Interests

FBC, JLB-C, FdAM, APMV, LS, and FdQ-T have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Ethical approval was granted by the Ethics Committee of Hospital Pequeno Príncipe with the waiver of the consent form due to the retrospective nature of the study and the fact that the data collection form is part of the routine of care. Ethical approval number: 3,803,746.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Authors’ Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were also performed by all authors. The first draft of the manuscript was written by FBC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavassin, F.B., Baú-Carneiro, J.L., de Araújo Motta, F. et al. Amphotericin B in Pediatrics: Analysis by Age Stratification Suggests a Greater Chance of Adverse Events from 13 Months of Age Onwards. Pediatr Drugs 24, 513–528 (2022). https://doi.org/10.1007/s40272-022-00523-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00523-0

Navigation