Skip to main content
Log in

Prediction of defluidization behavior using particle apparent viscosity

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The commercial utilization of fluidized beds is usually limited by particle agglomeration and subsequent defluidization. In this paper, a new mathematical model based on force balance is proposed to predict the defluidization behavior of particles in fluidized beds. In this model, the cohesive forces between particles are characterized using particle apparent viscosity and the separating force is mainly determined by the drag force. When the cohesion force was equal to the separating force at different fluidization condition, the minimum fluidization velocity and defluidization temperature were obtained by the model. Further, the fluidization behavior of copper particles including the minimum fluidization velocity and the temperature under which defluidization occurred was examined in a laboratory’s fluidized bed reactor. Compared with the experimental data, the results predicted by the model represent good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Karimi, M. Haghshenasfard, R. Sotudeh-Gharebagh, R. Zarghami and N. Mostoufi, Adv. Powder Technol., 29, 3145 (2018).

    Article  CAS  Google Scholar 

  2. J. R. Lee, Y. H. Kim and Y. S. Won, Korean J. Chem. Eng., 38, 1791 (2021).

    Article  CAS  Google Scholar 

  3. I. Mishra, P. Liu, A. Shetty and M. Hrenya, Chem. Eng. Sci., 214, 115422 (2020).

    Article  CAS  Google Scholar 

  4. Y. Zhou, Q. Shi, Z. Huang, J. Wang and Y. Yang, Chem. Eng. J., 330, 840 (2017).

    Article  CAS  Google Scholar 

  5. J. Li, J. Kong, S. He, Q. Zhu and H. Li, Chem. Eng. Sci., 177, 455 (2018).

    Article  CAS  Google Scholar 

  6. M. Komatina and H. W. Gudenau, J. Metall., 10, 309 (2004).

    Google Scholar 

  7. Y. Zhong, Z. Wang, Z. Guo and Q. Tang, Powder Technol., 249, 175 (2013).

    Article  CAS  Google Scholar 

  8. H. Lu, J. Cao, D. Macri, X. Guo, H. Liu and X. Gong, Powder Technol., 380, 106 (2021).

    Article  CAS  Google Scholar 

  9. B. J. Skrifvars, M. Hupa, R. Backman and M. Hiltunen, Fuel, 73, 171 (1994).

    Article  CAS  Google Scholar 

  10. C. L. Lin, M. Y. Wey and C. Y. Lu, Powder Technol., 161, 150 (2006).

    Article  CAS  Google Scholar 

  11. J. M. Valverde and A. Castellanos, Chem. Eng. J., 140, 296 (2008).

    Article  CAS  Google Scholar 

  12. J. P. K. Seville, H. Silomon-Pflug and P. C. Knight, Powder Technol., 97, 160 (1998).

    Article  CAS  Google Scholar 

  13. P. C. Knight, J. P. K. Seville, H. Kamiya and M. Horio, Chem. Eng. Sci., 55, 4783 (2000).

    Article  CAS  Google Scholar 

  14. Y. Zhong, Z. Wang, Z. Guo and Q. Tang, Powder Technol., 230, 225 (2012).

    Article  CAS  Google Scholar 

  15. X. Gong, B. Zhang, Z. Wang and Z. Guo, Metall. Trans. B., 45, 2050 (2014).

    Article  CAS  Google Scholar 

  16. J. He, Y. Zhao, Y. He, P. Walzel, G. Schaldach and C. Duan, Powder Technol., 241, 204 (2013).

    Article  CAS  Google Scholar 

  17. T. Mikami, H. Kamiya and M. Horio, Powder Technol., 89, 231 (1996).

    Article  CAS  Google Scholar 

  18. J. P. K. Seville, C. D. Willett and P. C. Knight, Powder Technol., 113, 261 (2000).

    Article  CAS  Google Scholar 

  19. E. J. Hinch, J. Fluid Mech., 686, 1 (2011).

    Article  Google Scholar 

  20. L. G. Gibilaro, K. Gallucci, R. Di Felice and P. Pagliai, Chem. Eng. Sci., 62, 294 (2007).

    Article  CAS  Google Scholar 

  21. C. Lei, Q. Zhu and H. Li, Chem. Eng. Sci., 118, 50 (2014).

    Article  CAS  Google Scholar 

  22. C. L. Lin, M. Y. Wey and S. D. You, Powder Technol., 126, 297 (2002).

    Article  CAS  Google Scholar 

  23. X. S. Wang and M. J. Rhodes, Chem. Eng. Sci., 59, 215 (2004).

    Article  CAS  Google Scholar 

  24. R. Yamazaki, N. S. Han, Z. F. Sun and G. Jimbo, Powder Technol., 84, 15 (1995).

    Article  CAS  Google Scholar 

  25. M. F. M. Osborne, Kolloid-Zeitschrift und Zeitschrift für Polymere, 224, 150 (1968).

    Article  CAS  Google Scholar 

  26. G. Tardos, D. Mazzone and R. Pfeffer, Can. J. Chem. Eng., 62, 884 (1984).

    Article  CAS  Google Scholar 

  27. Y. Zhang, Z. An, H. Bai, Q. Li and Z. Guo, Powder Technol., 284, 279 (2015).

    Article  CAS  Google Scholar 

  28. S. Ergun, Chem. Eng. Prog., 48, 89 (1952).

    CAS  Google Scholar 

  29. J. H. Kuo, K. Shih, C. L. Lin and M. Y. Wey, Powder Technol., 224, 395 (2012).

    Article  CAS  Google Scholar 

  30. R. Turton and O. Levenspiel, Powder Technol., 47, 83 (1986).

    Article  CAS  Google Scholar 

  31. Y. Komoda, K. Nakashima, H. Suzuki and H. Usui, Adv. Powder Technol., 17, 333 (2006).

    Article  CAS  Google Scholar 

  32. C. Torrez and C. André, Chem. Eng. Technol., 21, 599 (1998).

    Article  CAS  Google Scholar 

  33. P. K. Biswas, K. M. Godiwalla, D. Sanyal and S. C. Dev, Mate. Des., 23, 511 (2002).

    Article  CAS  Google Scholar 

  34. H. R. Moutinho, C. S. Jiang, B. To, C. Perkins, M. Muller, M. M. Al-Jassim and L. Simpson, Energ. Mat. Sol. C., 172, 145 (2017).

    Article  CAS  Google Scholar 

  35. C. S. Sandeep and K. Senetakis, Materials, 11, 217 (2018).

    Article  PubMed Central  Google Scholar 

  36. J. Katainen, M. Paajanen, E. Ahtola, V. Pore and J. Lahtinen, J. Colloid Interface Sci., 304, 524 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. A. Ata, Y. I. Rabinovich and R. K. Singh, J. Adhes. Sci. Technol., 16, 337 (2002).

    Article  CAS  Google Scholar 

  38. K. Noda, S. Uchida, T. Makino and H. Kamo, Powder Technol., 46, 149 (1986).

    Article  CAS  Google Scholar 

  39. D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic Press (1994).

  40. C. Y. Wen and Y. H. Yu, AIChE J., 12, 610 (1966).

    Article  CAS  Google Scholar 

  41. Y. Zhou and J. Zhu, Chem. Eng. J., 1, 402 (2020).

    Google Scholar 

  42. A. Anantharaman, R. A. Cocco and J. W. Chew, Powder Technol., 454, 323 (2018).

    Google Scholar 

  43. T. Kai, T. Kamei and T. Takahashi, AIChE J., 44, 491 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (No. 51234001), Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2019BS05018), Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (No. NJZY19128), and Inner Mongolia University of Science and Technology Innovation Fund (No. 2019QDL-B17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqing An.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Wang, H. & Zhang, Y. Prediction of defluidization behavior using particle apparent viscosity. Korean J. Chem. Eng. 39, 2875–2882 (2022). https://doi.org/10.1007/s11814-022-1183-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1183-3

Keywords

Navigation