Skip to main content
Log in

Transient response of immobilized enzyme reactors - the effects of reactor type and shape of core-shell bio-catalytic pellets

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Transient responses of immobilized enzyme reactors were obtained by solving coupled governing equations for core-shell catalytic pellets. The morphology of the pellets was assumed as sphere, cylinder, and slab-type particles having inert cores. Nonlinear reaction-diffusion equations of batch-mode reaction systems were solved by finite element method using commercial software, COMSOL Multiphysics, to investigate the effect of adjustable parameters such as thickness of inert core, Biot number, and the amount of pellets as well as reaction parameters of Michaelis-Menten kinetics. Modeling of CSTR was also carried out and the results were compared with the transient response of batch reactor by adjusting retention time during numerical calculations, reflecting deactivation of enzyme as time-dependent rate constant. For both types of reactors, spherical pellets were the most advantageous for reduction of reactant concentration with relatively smaller effect of the thickness of inert core, compared to other types of pellets. Additionally, a number of connected CSTRs were assumed for approximate analysis of fixed bed reactor, of which the behavior became close to a simple CSTR with increasing axial dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Datta, L. R. Christena and Y. R. S. Rajaram, 3 Biotech, 3, 1 (2013).

    Article  Google Scholar 

  2. A. Basso and S. Serban, Mol. Catal., 479, 110607 (2019).

    Article  CAS  Google Scholar 

  3. A. S. Simões, L. Ramos, L. Freitas, J. C. Santos, G. M. Zanin and H. F. de Castro, Biofuel Res. J., 6, 242 (2015).

    Article  Google Scholar 

  4. B. Wouters, S. A. Currivan, N. Abdulhussain, T. Hankemeier and P. J. Schoenmakers, Trends Anal. Chem., 144, 116419 (2021).

    Article  CAS  Google Scholar 

  5. C. B. Ching and K. H. Chu, Appl. Microbiol. Biotechnol., 29, 316 (1988).

    Article  CAS  Google Scholar 

  6. I. M. Abu-Reesh, Bioprocess Eng., 17, 131 (1997).

    Article  CAS  Google Scholar 

  7. A. Illanes, L. Wilson and L. Raiman, Bioprocess Eng., 21, 509 (1999).

    Article  CAS  Google Scholar 

  8. J. G. Palencia and E. M. Verruschi, Chem. Eng. Trans., 27, 379 (2012).

    Google Scholar 

  9. A. Ghadi, F. Tabandeh, S. Mahjoub, A. Mohsenifar, F. T. Roshan and R. S. Alavije, J. Oleo Sci., 64(4), 423 (2015).

    Article  CAS  Google Scholar 

  10. L. Li, Z. Gao, H. Zhang, H. Du, C. Ren, S. Qi and H. Chen, New J. Chem., 45, 11153 (2021).

    Article  CAS  Google Scholar 

  11. R. Varshney, S. Sharma, B. Prakash, J. K. Laha and D. Patra, ACS Omega, 4, 13790 (2021).

    Article  Google Scholar 

  12. Z. Gan, T. Zhang, Y. Liu and D. Wu, Plos One, 7(10), e47154 (2012).

    Article  CAS  Google Scholar 

  13. M. Moo-Young and T. Kobayashi, Can. J. Chem. Eng., 50, 162 (1972).

    Article  CAS  Google Scholar 

  14. N. E. Moreira and F. X. Malcata, J. Chem. Eng. Jpn., 29(2), 392 (1996).

    Article  CAS  Google Scholar 

  15. V. Bales and P. Rajniak, Chem. Papers, 40(3), 329 (1986).

    CAS  Google Scholar 

  16. A. E. AL-Muftaha and I. M. Abu-Reesh, Biochem. Eng. J., 23, 139 (2005).

    Article  Google Scholar 

  17. P. Valencia, S. Flores, L. Wilsona and A. Illanes, Biochem. Eng. J., 49, 256 (2010).

    Article  CAS  Google Scholar 

  18. R. Fraas and M. Franzreb, Biocatal. Biotransfor., 35(5), 337 (2017).

    Article  CAS  Google Scholar 

  19. S. H. Lin and C. K. Wei, Chem. Eng. Sci., 34, 827 (1979).

    Article  CAS  Google Scholar 

  20. S. Hertzberg, L. Kvittingen, T. Anthonsen and G. Skjåk-Braek, Enzyme Microb. Technol., 14(1), 42 (1992).

    Article  CAS  Google Scholar 

  21. G. Xiu, L. Jiang and P. Li, Ind. Eng. Chem. Res., 39(11), 4054 (2000).

    Article  CAS  Google Scholar 

  22. S. H. Lin, Biophys. Chem., 8, 105 (1978).

    Article  CAS  Google Scholar 

  23. P. De Santis, L.-E. Meyer and S. Kara, React. Chem. Eng., 5, 2155 (2020).

    Article  CAS  Google Scholar 

  24. A. Sanchez, J. Cruz, N. Rueda, J. C. S. dos Santos, R. Torres, C. Ortiz, R. Villalonga and R. Fernandez-Lafuente, RSC Adv., 6, 27329 (2016).

    Article  CAS  Google Scholar 

  25. G. Pettersson, Eur. J. Biochem., 69, 273 (1976).

    Article  CAS  Google Scholar 

  26. Y. Hayashi, S. Santoro, Y. Azuma, F. Himo, T. Ohshima and K. Mashima, J. Am. Chem. Soc., 135, 6192 (2013).

    Article  CAS  Google Scholar 

  27. Y.-S. Cho and S. Sung, Korean J. Chem. Eng., 37(11), 1836 (2020).

    Article  CAS  Google Scholar 

  28. U. Mehmetoglu, Enzyme Microb. Technol., 12, 124 (1990).

    Article  CAS  Google Scholar 

  29. P. Li, G. Xiu and A. E. Rodrigues, Chem. Eng. Sci., 58, 3361 (2003).

    Article  CAS  Google Scholar 

  30. S. H. Lin, J. Appl. Chem. Biotechnol., 28, 677 (1978).

    CAS  Google Scholar 

  31. J. O. M. Rosa, R. M. Escobar, T. V. Garcia and J. A. Ochoa-Tapia, Chem. Eng. Sci., 57, 1409 (2002).

    Article  Google Scholar 

  32. M. E. Maria and M. B. Mansur, Braz. J. Chem. Eng., 34(3), 901 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A03015562), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1047451), and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOITIE, P0002007, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YS. Transient response of immobilized enzyme reactors - the effects of reactor type and shape of core-shell bio-catalytic pellets. Korean J. Chem. Eng. 39, 2275–2290 (2022). https://doi.org/10.1007/s11814-022-1174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1174-4

Keywords

Navigation