Skip to main content
Log in

The effect of CNTs on V-Ce/TiO2 for low-temperature selective catalytic reduction of NO

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are widely utilized as catalyst promoters because of their unique structure and electrical properties. In this study, CNTs were added as a promoter to V-Ce/TiO2 (VCT), which is a commercial catalyst used for the NH3-SCR reaction. We investigated the role of CNTs in the V-Ce/TiO2-CNTs (VCTC) catalyst. Therefore, we characterized them using X-ray diffraction (XRD), N2 adsorption/desorption experiments, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), temperature-programmed reduction of H2 (H2-TPR), temperature-programmed desorption of NO/NH3 (NO/NH3-TPD), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FT-IR). Higher NO conversion and N2 selectivity were achieved in the VCTC catalyst than in the VCT catalyst, confirming the favorable effect of CNTs on the NH3-SCR reaction. Additionally, CNTs considerably influenced the crystal structure formation of the metal oxides located on the catalyst surface. Consequently, metal-metal and metal-support undergo distinct interactions, thereby positively influencing catalytic characteristics such as redox properties, oxidation state, acid sites, and the formation of nitrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VCT:

V-Ce/TiO2

VCTC:

V-Ce/TiO2-CNTs

SCR:

selective catalytic reduction

H2-TPR:

temperature-programmed reduction of H2

NO/NH3-TPD:

temperature-programmed desorption of NO/NH3

References

  1. K. Skalska, J. S. Miller and S. Ledakowicz, Sci. Total Environ., 408, 3976 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. S. L. Gilhespy, S. Anthony, L. Cardenas, D. Chadwick, A. del Prado, C. Li, T. Misselbrook, R. M. Rees, W. Salas, A. Sanz-Cobena, P. Smith, E. L. Tilston, C. F. E. Topp, S. Vetter and J. B. Yeluripati, Ecol. Model., 292, 51 (2014).

    Article  CAS  Google Scholar 

  3. L. Han, S. Cai, M. Gao, J. Y. Hasegawa, P. Wang, J. Zhang, L. Shi and D. Zhang, Chem. Rev., 119, 10916 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Z. Lian, J. Wei, W. Shan, Y. Yu, P. M. Radjenovic, H. Zhang, G. He, F. Liu, J.-F. Li, Z.-Q. Tian and H. He, J. Am. Chem. Soc., 143, 10454 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. T. Tong, J. Chen, S. Xiong, W. Yang, Q. Yang, L. Yang, Y. Peng, Z. Liu and J. Li, Catal. Sci. Technol., 9, 3779 (2019).

    Article  CAS  Google Scholar 

  6. Z. Liu, Y. Li, T. Zhu, H. Su and J. Zhu, Ind. Eng. Chem. Res., 53, 12964 (2014).

    Article  CAS  Google Scholar 

  7. Y. Liu, J. Zhao and J.-M. Lee, ChemCatChem, 10, 1499 (2018).

    Article  CAS  Google Scholar 

  8. J. Xu, G. Chen, F. Guo and J. Xie, Chem. Eng. J., 353, 507 (2018).

    Article  CAS  Google Scholar 

  9. B. Shen, F. Wang, B. Zhao, Y. Li and Y. Wang, J. Ind. Eng. Chem., 33, 262 (2016).

    Article  CAS  Google Scholar 

  10. Y. S. Kang, S. S. Kim and S. C. Hong, J. Ind. Eng. Chem., 30, 197 (2015).

    Article  CAS  Google Scholar 

  11. C. Liu, J.-W. Shi, C. Gao and C. Niu, Appl. Catal. A, 522, 54 (2016).

    Article  CAS  Google Scholar 

  12. Y. Zeng, S. Zhang, Y. Wang, G. Liu and Q. Zhong, RSC Adv., 7, 23348 (2017).

    Article  CAS  Google Scholar 

  13. N. M. Rodriguez, M.-S. Kim and R. T. K. Baker, J. Phys. Chem., 98, 13108 (1994).

    Article  CAS  Google Scholar 

  14. B. Huang, R. Huang, D. Jin and D. Ye, Catal. Today, 126, 279 (2007).

    Article  CAS  Google Scholar 

  15. Y. Su, B. Fan, L. Wang, Y. Liu, B. Huang, M. Fu, L. Chen and D. Ye, Catal. Today, 201, 115 (2013).

    Article  CAS  Google Scholar 

  16. A. Valtanen, M. Huuhtanen, A.-R. Rautio, T. Kolli, K. Kordás and R. L. Keiski, Top. Catal., 58, 984 (2015).

    Article  CAS  Google Scholar 

  17. E. Lam and J. H. T. Luong, ACS Catal., 4, 3393 (2014).

    Article  CAS  Google Scholar 

  18. Z. Liu, S. Zhang, J. Li, J. Zhu and L. Ma, Appl. Catal. B, 158–159, 11 (2014).

    Article  CAS  Google Scholar 

  19. M. Gallastegi-Villa, A. Aranzabal, M. P. González-Marcos, B. A. Markaide-Aiastui, J. A. González-Marcos and J. R. González-Velasco, J. Ind. Eng. Chem., 81, 440 (2020).

    Article  CAS  Google Scholar 

  20. J. Fang, X. Bi, D. Si, Z. Jiang and W. Huang, Appl. Surf. Sci., 253, 8952 (2007).

    Article  CAS  Google Scholar 

  21. X. Gao, Y. Jiang, Y. Zhong, Z. Luo and K. Cen, J. Hazard. Mater., 174, 734 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Z. Ma, H. Yang, Q. Li, J. Zheng and X. Zhang, Appl. Catal. A, 427–428, 43 (2012).

    Article  CAS  Google Scholar 

  23. M.-J. Kim, H. J. Kim, S.-J. Lee, I.-S. Ryu, H. C. Yoon, K. B. Lee and S. G. Jeon, Catal. Commun., 130, 105764 (2019).

    Article  CAS  Google Scholar 

  24. M.-J. Kim, S.-J. Lee, I.-S. Ryu, M.-W. Jeon, S.-H. Moon, H.-S. Roh and S. G. Jeon, Mol. Catal., 442, 202 (2017).

    Article  CAS  Google Scholar 

  25. S. E. Kim, S. K. Jeong, K. T. Park, K.-Y. Lee and H. J. Kim, Catal. Commun., 148, 106167 (2021).

    Article  CAS  Google Scholar 

  26. B. Ye, S.-I. Kim, M. Lee, M. Ezazi, H.-D. Kim, G. Kwon and D. H. Lee, RSC Adv., 10, 16700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Chen, J. Li and M. Ge, J. Phys. Chem. C, 113, 21177 (2009).

    Article  CAS  Google Scholar 

  28. M.-J. Kim, J.-R. Youn, S.-J. Lee, I.-S. Ryu, S. C. Nam, S. K. Jeong and S. G. Jeon, J. Ind. Eng. Chem., 108, 438 (2022).

    Article  CAS  Google Scholar 

  29. M.-J. Kim, J.-R. Youn, H. J. Kim, M. W. Seo, D. Lee, K. S. Go, K. B. Lee and S. G. Jeon, Int. J. Hydrogen Energy, 45, 24595 (2020).

    Article  CAS  Google Scholar 

  30. X. Yao, T. Kong, L. Chen, S. Ding, F. Yang and L. Dong, Appl. Surf. Sci., 420, 407 (2017).

    Article  CAS  Google Scholar 

  31. Y. Fan, W. Ling, B. Huang, L. Dong, C. Yu and H. Xi, J. Ind. Eng. Chem., 56, 108 (2017).

    Article  CAS  Google Scholar 

  32. J.-R. Youn, M.-J. Kim, S.-J. Lee, I.-S. Ryu, H. C. Yoon, S. K. Jeong, K. Lee and S. G. Jeon, Catal. Commun., 152, 106282 (2021).

    Article  CAS  Google Scholar 

  33. S. Song and S. Jiang, Appl. Catal. B, 117–118, 346 (2012).

    Article  CAS  Google Scholar 

  34. X. Wang, Y. Zheng, Z. Xu, Y. Liu and X. Wang, Catal. Sci. Technol., 4, 1738 (2014).

    Article  CAS  Google Scholar 

  35. H. K. Sharma, S. K. Sharma, K. Vemula, A. R. Koirala, H. M. Yadav and B. P. Singh, Solid State Sci., 112, 106492 (2021).

    Article  CAS  Google Scholar 

  36. P.-W. Chou, Y.-S. Wang, C.-C. Lin, Y.-J. Chen, C.-L. Cheng and M.-S. Wong, Surf. Coat. Technol., 204, 834 (2009).

    Article  CAS  Google Scholar 

  37. W. Zhao, K. Zhang, L. Wu, Q. Wang, D. Shang and Q. Zhong, J. Colloid Interface Sci., 581, 76 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. A. Ko, Y. Woo, J. Jang, Y. Jung, Y. Pyo, H. Jo, O. Lim and Y. J. Lee, J. Ind. Eng. Chem., 78, 433 (2019).

    Article  CAS  Google Scholar 

  39. C. Chen, Y. Cao, S. Liu and W. Jia, Appl. Surf. Sci., 507, 145153 (2020).

    Article  CAS  Google Scholar 

  40. M. Chao, D. Mao, G. Li, G. Li, J. Yu and X. Guo, J. Sol-Gel Sci. Technol., 95, 332 (2020).

    Article  CAS  Google Scholar 

  41. K. B. Nam, D. W. Kwon and S. C. Hong, Appl. Catal. A, 542, 55 (2017).

    Article  CAS  Google Scholar 

  42. Y. Liu, Y. Hou, X. Han, J. Wang, Y. Guo, N. Xiang, Y. Bai and Z. Huang, ChemCatChem, 12, 953 (2019).

    Article  CAS  Google Scholar 

  43. Z. Li, S. Dai, L. Ma, Z. Qu, N. Yan and J. Li, Chem. Eng. J., 413, 127447 (2021).

    Article  CAS  Google Scholar 

  44. F. Cao, J. Chen, M. Ni, H. Song, G. Xiao, W. Wu, X. Gao and K. Cen, RSC Adv., 4, 16281 (2014).

    Article  CAS  Google Scholar 

  45. J. M. Won, J. T. Kim, S. K. Jeong and S.-M. Hwang, Appl. Surf. Sci., 566, 150632 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (C2-2435); and this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1009054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyubock Lee or Sang Goo Jeon.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, JR., Kim, MJ., Lee, SJ. et al. The effect of CNTs on V-Ce/TiO2 for low-temperature selective catalytic reduction of NO. Korean J. Chem. Eng. 39, 2334–2344 (2022). https://doi.org/10.1007/s11814-022-1182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1182-4

Keywords

Navigation