Skip to main content
Log in

Distinct stereospecific effect of chiral tether between a tag and protein on the rigidity of paramagnetic tag

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Flexibility between the paramagnetic tag and its protein conjugates is a common yet unresolved issue in the applications of paramagnetic NMR spectroscopy in biological systems. The flexibility greatly attenuates the magnetic anisotropy and compromises paramagnetic effects especially for pseudocontact shift and residual dipolar couplings. Great efforts have been made to improve the rigidity of paramagnetic tag in the protein conjugates, however, the effect of local environment vicinal to the protein ligation site on the paramagnetic effects remains poorly understood. In the present work, the stereospecific effect of chiral tether between the protein and a tag on the paramagnetic effects produced by the tag attached via a D- and L-type linker between the protein and paramagnetic metal chelating moiety was assessed. The remarkable chiral effect of the D- and L-type tether between the tag and the protein on the rigidity of paramagnetic tag is disclosed in a number of protein-tag-Ln complexes. The chiral tether formed between the D-type tag and L-type protein surface minimizes the effect of the local environment surrounding the ligation site on the averaging of paramagnetic tag, which is helpful to preserve the rigidity of a paramagnetic tag in the protein conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allegrozzi M, Bertini I, Janik MB, Lee YM, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Article  Google Scholar 

  • Assfalg M, Bertini I, Turano P, Mauk AG, Winkler JR, Gray HB (2003) 15N–1H Residual dipolar coupling analysis of native and Alkaline-K79A saccharomyces cerevisiae Cytochrome c. Biophys J 84:3917–3923

    Article  Google Scholar 

  • Azzarito V, Miles JA, Fisher J, Edwards TA, Warriner SL, Wilson AJ (2015) Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers. Chem Sci 6:2434–2443

    Article  Google Scholar 

  • Barthelmes K, Reynolds AM, Peisach E, Jonker HRA, DeNunzio NJ, Allen KN, Imperiali B, Schwalbe H (2011) Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc 133:808–819

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog Nucl Magn Reson Spectr 40:249–273

    Article  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846

    Article  ADS  Google Scholar 

  • Bouvignies G, Meier S, Grzesiek S, Blackledge M (2006) Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media. Angew Chem Int Ed Engl 45:8166–8169

    Article  Google Scholar 

  • Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC (2014) Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. J Biomol NMR 59:251–261

    Article  Google Scholar 

  • Chen J-L, Li B, Li X-Y, Su X-C (2020) Dynamic exchange of the metal chelating moiety: a key factor in determining the rigidity of protein−tag conjugates in paramagnetic NMR. J Phys Chem Lett 11:9493–9500

    Article  Google Scholar 

  • Chen J-L, Chen B-G, Li B, Yang F, Su X-C (2021) Assessing multiple conformations of lanthanide binding tags for proteins using a sensitive 19F-reporter. Chem Commun 57:4291–4294

    Article  Google Scholar 

  • del Milton RC, Milton SCF, Kent SBH (1992) Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show demonstration of reciprocal chiral substrate specificity. Science 256:1445–1448

    Article  ADS  Google Scholar 

  • Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231

    Article  Google Scholar 

  • Fenwick RB, Esteban-Martín S, Richter B, Lee D, Walter KF, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133:10336–10339

    Article  Google Scholar 

  • Frericks Schmidt HL, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CM (2007) Crystal Polymorphism of Protein GB1 Examined by Solid-State NMR Spectroscopy and X-ray Diffraction. J Phys Chem B 111:14362–14369

    Article  Google Scholar 

  • Goddard TD, Kneller DG, Sparky 3, University of California, San Francisco

  • Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G (2011) DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in Protein NMR spectra. Bioconjug Chem 22:2118–2125

    Article  Google Scholar 

  • Häussinger D, Huang J, Grzesiek S (2009) DOTA-M8: An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc 131:14761–14767

    Article  Google Scholar 

  • Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Saxena K, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349

    Article  Google Scholar 

  • Joss D, Häussinger D (2019a) Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. Prog Nucl Magn Reson Spectr 114–115:284–312

    Article  Google Scholar 

  • Joss D, Häussinger D (2019b) P4T-DOTA – a lanthanide chelating tag combining a sterically highly overcrowded backbone with a reductively stable linker. Chem Commun 55:10543–10546

    Article  Google Scholar 

  • Keizers PHJ, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293

    Article  Google Scholar 

  • Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog Nucl Magn Reson Spectr 59:360–389

    Article  Google Scholar 

  • Lakomek N-A, Walter KFA, Farès C, Lange OF, de Groot BL, Grubmüller H, Brüschweiler R, Munk A, Becker S, Meiler J, Griesinger C (2008) Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. J Biomol NMR 41:139–155

    Article  Google Scholar 

  • Lange OF, Lakomek NA, Farès C, Schröder GF, Walter KF, Becker S, Meiler J, Grubmuller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  ADS  Google Scholar 

  • Lee MD, Loh C-T, Shin J, Chhabra S, Dennis ML, Otting G, Swarbrick JD, Graham B (2015) Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci 6:2614–2624

    Article  Google Scholar 

  • Lee MD, Dennis ML, Swarbrick JD, Graham B (2016) Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Chem Commun 52:7954–7957

    Article  Google Scholar 

  • Lee MD, Dennis ML, Graham B, Swarbrick JD (2017) Short two-armed lanthanide-binding tags for paramagnetic NMR spectroscopy based on chiral 1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane scaffolds. Chem Commun 53:13205–13208

    Article  Google Scholar 

  • Li Q-F, Yang Y, Maleckis A, Otting G, Su X-C (2012) Thiol–ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem Commun 48:2704–2706

    Article  Google Scholar 

  • Liu W-M, Overland M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273–274:2–12

    Article  Google Scholar 

  • Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drugbased liquid crystalline phase. J Am Chem Soc 136:3752–3755

    Article  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • Martorana A, Yang Y, Zhao Y, Li Q-F, Su X-C, Goldfarb D (2015) Mn(II) tags for DEER distance measurements in proteins via C-S attachment. Dalton Trans 44:20812–20816

    Article  Google Scholar 

  • Mikhael S, Abrol R (2019) Chiral graphs: reduced representations of ligand scaffolds for stereoselective biomolecular recognition, drug design, and enhanced exploration of chemical structure space. ChemMedChem 14:798–809

    Article  Google Scholar 

  • Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted clycine peptide and peptoid oligomers. Drug Dev Res 35:20–32

    Article  Google Scholar 

  • Nitsche C, Otting G (2017) Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog Nucl Magn Reson Spectr 98–99:211–236

    Google Scholar 

  • Orton HW, Huber T, Otting G (2020) Paramagpy: software for fitting magnetic susceptibility tensors using paramagnetic effects measured in NMR spectra. Magn Reson 1:1–12

    Article  Google Scholar 

  • Orton HW, Abdelkader EH, Topping L, Butler SJ, Otting G (2022) Localising nuclear spins by pseudocontact shifts from a single tagging site. Magn Reson. https://doi.org/10.5194/mr-2022-3

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplifed two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  ADS  Google Scholar 

  • Parigi G, Ravera E, Luchinat C (2019) Magnetic susceptibility and paramagnetism-based NMR. Prog Nucl Magn Reson Spectr 114–115:211–236

    Article  Google Scholar 

  • Pearce BJG, Jabar S, Loh C-T, Szabo M, Graham B, Otting G (2017) Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites. J Biomol NMR 68:19–32

    Article  Google Scholar 

  • Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem J 299:151–158

    Article  Google Scholar 

  • Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C (2015) FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. J Biolmol NMR 61:21–34

    Article  Google Scholar 

  • Saio T, Ishimoria K (2020) Accelerating structural life science by paramagnetic lanthanide probe methods. BBA-Gen Subj 1864:129332

    Article  Google Scholar 

  • Saio T, Ogura K, Yokochi M, Kobashigawa Y, Inagaki F (2009) Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J Biomol NMR 44:157–166

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an Interactive Software Tool for Fitting Δχ-Tensors to Molecular Coordinates using Pseudocontact Shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Schumacher TNM, Mayr LM, Minor DL Jr, Milhollen MA, Burgess MW, Kim PS (1996) Identification of D-peptide ligands through mirror-image phage display. Science 271:1854–1857

    Article  ADS  Google Scholar 

  • Shishmarev D, Otting G (2013) How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? a modelling study. J Biomol NMR 56:203–216

    Article  Google Scholar 

  • Su X-C, Chen J-L (2019) Site-specific tagging of proteins with paramagnetic ions for determination of protein structures in solution and in cells. Acc Chem Res 52:1675–1686

    Article  Google Scholar 

  • Su X-C, McAndrew K, Huber T, Otting G (2008a) Lanthanide-binding peptides for nmr measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Article  Google Scholar 

  • Su X-C, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008b) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487

    Article  Google Scholar 

  • Suturina EA, Kuprov I (2016) Pseudocontact shifts from mobile spin labels. Phys Chem Chem Phys 18:26412–26422

    Article  Google Scholar 

  • Suturina EA, Häussinger D, Zimmermann K, Garbuio L, Yulikov M, Jeschke G, Kuprov I (2017) Model-free extraction of spin label position distributions from pseudocontact shift data. Chem Sci 8:2751–2757

    Article  Google Scholar 

  • Swarbrick JD, Ung P, Chhabra S, Graham B (2011) An Iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. Angew Chem Int Ed 50:4403–4406

    Article  Google Scholar 

  • Tharayil SM, Mahawaththa MC, Loh C-T, Adekoya I, Otting G (2021) Phosphoserine for the generation of lanthanide binding sites on proteins for paramagnetic NMR. Magn Reson 2:1–13

    Article  Google Scholar 

  • Vogel R, Müntener T, Häussinger D (2021) Intrinsic anisotropy parameters of a series of lanthanoid complexes deliver new insights into the structure-magnetism relationship. Chem 7:3144–3156

    Article  Google Scholar 

  • Wang CK, King GJ, Northfield SE, Ojeda PG, Craik DJ (2014) Racemic and quasi-racemic X-ray structures of cyclic disulfide-rich peptide drug scaffolds. Angew Chem Int Ed 53:11236–11241

    Article  Google Scholar 

  • Welegedara AP, Yang Y, Lee MD, Swarbrick JD, Huber T, Graham B, Goldfarb D, Otting G (2017) double-arm lanthanide tags deliver narrow Gd3+–Gd3+ distance distributions in double electron-electron resonance (DEER) measurements. Chem Eur J 23:11694–11702

    Article  Google Scholar 

  • Yang Y, Wang J-T, Pei Y-Y, Su X-C (2015) Site-specific tagging proteins via a rigid, stable and short thiolether tether for paramagnetic spectroscopic analysis. Chem Commun 51:2824–2827

    Article  Google Scholar 

  • Yang Y, Huang F, Huber T, Su X-C (2016a) Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. J Biomol NMR 64:103–113

    Article  Google Scholar 

  • Yang F, Wang X, Pan B-B, Su X-C (2016b) Single-armed phenylsulfonated pyridine derivative of DOTA is rigid and stable paramagnetic tag in protein analysis. Chem Commun 52:11535–11538

    Article  Google Scholar 

  • Zhao C, Song H, Scott P, Zhao A, Tateishi-Karimata H, Sugimoto N, Ren J, Qu X (2018) Mirror-image dependence: targeting enantiomeric G-quadruplex DNA using triplex metallohelices. Angew Chem Int Ed 57:15723–15727

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (22174074 and 21991081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Cheng Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JL., Li, B., Ma, B. et al. Distinct stereospecific effect of chiral tether between a tag and protein on the rigidity of paramagnetic tag. J Biomol NMR 76, 107–119 (2022). https://doi.org/10.1007/s10858-022-00399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-022-00399-9

Keywords

Navigation