Skip to main content
Log in

Temporal trends of deuterium excess in global precipitation and their environmental controls under a changing climate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sixty-three representative sites around the world were selected to analyze the long-term variability of deuterium excess (d-excess) and its association with air temperature and precipitation amount. The results from the Mann–Kendall test showed that d-excess tended to increase at two-thirds of the sites. We demonstrated from several perspectives that high temperatures and concentrated precipitation can counteract the correlation between d-excess and these two meteorological factors. Our findings suggested that d-excess was an indicator for climate change at sites controlled by a single factor; however, at sites affected by multiple factors its role was more complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang JF, Xu CD, Hu MG, Li QX, Yan ZW, Jones P (2018) Global land surface air temperature dynamics since 1880. Int J Climatol 38:E466–E474. https://doi.org/10.1002/joc.5384

    Article  Google Scholar 

  2. IPCC (2021) Climate Change 2021 Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers. In press

  3. Langill JC, Abizaid C (2020) What is a bad flood? Local perspectives of extreme floods in the Peruvian Amazon. Ambio 49(8):1423–1436. https://doi.org/10.1007/s13280-019-01278-8

    Article  PubMed  Google Scholar 

  4. Aryal JP, Sapkota TB, Rahut DB, Krupnik TJ, Shahrin S, Jat ML, Stirling CM (2020) Major climate risks and adaptation strategies of smallholder farmers in coastal Bangladesh. Environ Manage 66(1):105–120. https://doi.org/10.1007/s00267-020-01291-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmadi H, Azizzadeh J (2020) The impacts of climate change based on regional and global climate models (RCMs and GCMs) projections (case study: Ilam province). Model Earth Syst Environ 6(2):685–696. https://doi.org/10.1007/s40808-020-00721-0

    Article  Google Scholar 

  6. Huntington TG (2006) Evidence for intensification of the global water cycle: Review and synthesis. J Hydrol 319(1–4):83–95. https://doi.org/10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  7. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072. https://doi.org/10.1126/science.1128845

    Article  CAS  PubMed  Google Scholar 

  8. Laine A, Nakamura H, Nishii K, Miyasaka T (2014) A diagnostic study of future evaporation changes projected in CMIP5 climate models. Clim Dyn 42(9–10):2745–2761. https://doi.org/10.1007/s00382-014-2087-7

    Article  Google Scholar 

  9. Rilov G, David N, Guy-Haim T, Golomb D, Arav R, Filin S (2021) Sea level rise can severely reduce biodiversity and community net production on rocky shores. Sci Total Environ 791:13. https://doi.org/10.1016/j.scitotenv.2021.148377

    Article  CAS  Google Scholar 

  10. Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34(18):6. https://doi.org/10.1029/2007gl031460

    Article  Google Scholar 

  11. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419 (6903):224-+. doi:https://doi.org/10.1038/nature01092

  12. Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8(5):225–239. https://doi.org/10.1007/bf00198617

    Article  Google Scholar 

  13. John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys Res Lett 36:5. https://doi.org/10.1029/2009gl038276

    Article  Google Scholar 

  14. Chou C, Chiang JCH, Lan CW, Chung CH, Liao YC, Lee CJ (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6(4):263–267. https://doi.org/10.1038/ngeo1744

    Article  CAS  Google Scholar 

  15. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/jcli3990.1

    Article  Google Scholar 

  16. Lorenz DJ, DeWeaver ET, Vimont DJ (2010) Evaporation change and global warming: The role of net radiation and relative humidity. J Geophys Res-Atmos 115:13. https://doi.org/10.1029/2010jd013949

    Article  Google Scholar 

  17. Chen YN, Li Z, Fan YT, Wang HJ, Deng HJ (2015) Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ Res 139:11–19. https://doi.org/10.1016/j.envres.2014.12.029

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Chen YN, Shen YJ, Liu YB, Zhang SH (2013) Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour Res 49(4):2205–2212. https://doi.org/10.1002/wrcr.20202

    Article  Google Scholar 

  19. Yu X, Zhang Y, Liu P, Huang H, Huang X (2022) Hydrochemical characteristics and D-O–Sr isotopes of groundwater and surface water in the northern Longzi county of southern Tibet (southwestern China). Open Geosci 14(1):111–119. https://doi.org/10.1515/geo-2020-0334

    Article  Google Scholar 

  20. Xia C, Liu G, Meng Y, Wang Z, Zhang X (2021) Impact of human activities on urban river system and its implication for water-environment risks: an isotope-based investigation in Chengdu. China Hum Ecol Risk Assess 27(5):1416–1439. https://doi.org/10.1080/10807039.2020.1848416

    Article  CAS  Google Scholar 

  21. Zhang Y, Xu M, Li X, Qi J, Zhang Q, Guo J, Yu L, Zhao R (2018) Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County, Southwestern China. Water 10 (1). doi:https://doi.org/10.3390/w10010080

  22. Zuecco G, Carturan L, De Blasi F, Seppi R, Zanoner T, Penna D, Borga M, Carton A, Dalla Fontana G (2018) Understanding hydrological processes in glacierized catchments: evidence and implications of highly-variable isotopic and electrical conductivity data. Hydrol Process. https://doi.org/10.1002/hyp.13366

    Article  Google Scholar 

  23. Wang T, Chen JS (2020) Long-term trend of precipitation stable isotopic compositions under global warming conditions. J Radioanal Nucl Chem 325(2):557–565. https://doi.org/10.1007/s10967-020-07246-x

    Article  CAS  Google Scholar 

  24. Xia C, Liu G, Zhou J, Meng Y, Chen K, Gu P, Yang M, Huang X, Mei J (2021) Revealing the impact of water conservancy projects and urbanization on hydrological cycle based on the distribution of hydrogen and oxygen isotopes in water. Environ Sci Pollut Res Int 28(30):40160–40177. https://doi.org/10.1007/s11356-020-11647-6

    Article  CAS  PubMed  Google Scholar 

  25. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468. https://doi.org/10.3402/tellusa.v16i4.8993

    Article  Google Scholar 

  26. Craig H (1961) Isotopic variations in meteoric waters. Science 133(346):1702–2000. https://doi.org/10.1126/science.133.3465.1702

    Article  CAS  PubMed  Google Scholar 

  27. Clark I, Fritz P (1997). Environmental isotopes in hydrogeology Lewis. https://doi.org/10.1201/9781482242911

    Article  Google Scholar 

  28. Guan HD, Zhang XP, Skrzypek G, Sun Z, Xu X (2013) Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J Geophys Res-Atmos 118(2):1123–1138. https://doi.org/10.1002/jgrd.50137

    Article  Google Scholar 

  29. Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14(8):1341–1355. https://doi.org/10.1002/1099-1085(20000615)14:8%3c1341::Aid-hyp983%3e3.0.Co;2-z

    Article  Google Scholar 

  30. Feng X, Faiia AM, Posmentier ES (2009) Seasonality of isotopes in precipitation: A global perspective. J Geophys Res 114 (D8). doi:https://doi.org/10.1029/2008jd011279

  31. Masiol M, Zannoni D, Stenni B, Dreossi G, Zini L, Calligaris C, Karlicek D, Michelini M, Flora O, Cucchi F, Treu F (2021) Spatial distribution and interannual trends of δ18O, δ2H, and deuterium excess in precipitation across North-Eastern Italy. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125749

    Article  Google Scholar 

  32. Landais A, Ekaykin A, Barkan E, Winkler R, Luz B (2017) Seasonal variations of 17 O-excess and d-excess in snow precipitation at Vostok station. East Antarctica J Glaciol 58(210):725–733. https://doi.org/10.3189/2012JoG11J237

    Article  CAS  Google Scholar 

  33. Heydarizad M, Gimeno L, Sorí R, Minaei F, Mayvan JE (2021) The stable isotope characteristics of precipitation in the middle east highlighting the link between the Köppen climate classifications and the δ18O and δ2H values of precipitation. Water 13 (17). doi:https://doi.org/10.3390/w13172397

  34. Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res-Oceans 84(NC8):5029–5033. https://doi.org/10.1029/JC084iC08p05029

    Article  Google Scholar 

  35. Pfahl S, Sodemann H (2014) What controls deuterium excess in global precipitation? Clim Past 10(2):771–781. https://doi.org/10.5194/cp-10-771-2014

    Article  Google Scholar 

  36. Steen-Larsen HC, Sveinbjornsdottir AE, Jonsson T, Ritter F, Bonne JL, Masson-Delmotte V, Sodemann H, Blunier T, Dahl-Jensen D, Vinther BM (2015) Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J Geophys Res-Atmos 120(12):5757–5774. https://doi.org/10.1002/2015jd023234

    Article  Google Scholar 

  37. Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N (2008) Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res-Atmos 113(D19):10. https://doi.org/10.1029/2008jd010209

    Article  Google Scholar 

  38. Hu YD, Liu ZH, Zhao M, Zeng QR, Zeng C, Chen B, Chen CY, He HB, Cai XL, Ou Y, Chen J (2018) Using deuterium excess, precipitation and runoff data to determine evaporation and transpiration: A case study from the Shawan Test Site, Puding, Guizhou, China. Geochim Cosmochim Acta 242:21–33. https://doi.org/10.1016/j.gca.2018.08.049

    Article  CAS  Google Scholar 

  39. Rozanski K, Araguasaraguas L, Gonfiantini R (1992) Relation between long-term trends of O-18 isotope composition of precipitation and climate. Science 258(5084):981–985. https://doi.org/10.1126/science.258.5084.981

    Article  CAS  PubMed  Google Scholar 

  40. Stumpp C, Klaus J, Stichler W (2014) Analysis of long-term stable isotopic composition in German precipitation. J Hydrol 517:351–361. https://doi.org/10.1016/j.jhydrol.2014.05.034

    Article  CAS  Google Scholar 

  41. Vystavna Y, Matiatos I, Wassenaar LI (2021) Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. Sci Rep 11(1):9. https://doi.org/10.1038/s41598-021-98094-6

    Article  CAS  Google Scholar 

  42. Hu Y, Liu G-d, Xia C-c (2018) Multi-time scale analysis of hydrogen and oxygen isotope characteristics and influence factors in precipitation in Vienna. Matec Web Conf. https://doi.org/10.1051/matecconf/201824602011

    Article  Google Scholar 

  43. Krajcar Bronić I, Barešić J, Borković D, Sironić A, Mikelić IL, Vreča P (2020) Long-term isotope records of precipitation in Zagreb, Croatia. Water 12 (1). doi:https://doi.org/10.3390/w12010226

  44. Hamed KH (2008) Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349(3):350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009

    Article  Google Scholar 

  45. Guan XX, Zhang JY, Elmahdi A, Li XM, Liu J, Liu Y, Jin JL, Liu YL, Bao ZX, Liu CS, He RM, Wang GQ (2019) The capacity of the hydrological modeling for water resource assessment under the changing environment in semi-arid river basins in China. Water 11(7):20. https://doi.org/10.3390/w11071328

    Article  Google Scholar 

  46. Mann HB (1945) Nonparameteric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  47. Stuart A (1956) Rank correlation methods. By M. G. Kendall, 2nd edition. Brit J Math Stat Psy 9 (1):68–68. doi:https://doi.org/10.1111/j.2044-8317.1956.tb00172.x

  48. Kendall, MG (1955) Rank correlation methods (5th edition 1996), Edward Arnold, London, UK

  49. McBean E, Motiee H (2009) An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrol Res 40(6):564–579. https://doi.org/10.2166/nh.2009.061

    Article  Google Scholar 

  50. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1):182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  51. Wang XQ, Yu QQ (2005) Unbiasedness of the Theil-Sen estimator. J Nonparametr Stat 17(6):685–695. https://doi.org/10.1080/10485250500039452

    Article  Google Scholar 

  52. Pearson K (1916) On some novel properties of partial and multiple correlation coefficients in a universe of manifold characteristics. Biometrika 11(3):231–238. https://doi.org/10.1093/biomet/11.3.231

    Article  Google Scholar 

  53. Sengupta S, Mohinuddin S, Arif M (2021) Spatiotemporal dynamics of temperature and precipitation with reference to COVID-19 pandemic lockdown: perspective from Indian subcontinent. Environ Dev Sustain 23(9):13778–13818. https://doi.org/10.1007/s10668-021-01238-x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Eischeid JK, Bruce Baker C, Karl TR, Diaz HF (1995) The quality control of long-term climatological data using objective data analysis. J Appl Meteorol Climatol 34(12):2787–2795. https://doi.org/10.1175/1520-0450(1995)034%3c2787:TQCOLT%3e2.0.CO;2

    Article  Google Scholar 

  55. Yuchuan M, Guodong L (2010) Effect of below-cloud secondary evaparation on the stable isotopes in precipitation over the Yangtze River basin. Adv water sci 21(3):327–334.

    Google Scholar 

  56. Lykoudis SP, Argiriou AA (2011) Temporal trends in the stable isotope composition of precipitation: a comparison between the eastern Mediterranean and central Europe. Theor Appl Climatol 105(1–2):199–207. https://doi.org/10.1007/s00704-010-0384-6

    Article  Google Scholar 

  57. Adler RF, Gu G, Wang J-J, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113 (D22). doi:https://doi.org/10.1029/2008jd010536

  58. Liu J, Fu G, Song X, Charles SP, Zhang Y, Han D, Wang S (2010) Stable isotopic compositions in Australian precipitation. J Geophys Res 115 (D23). doi:https://doi.org/10.1029/2010jd014403

  59. Pfahl S, Wernli H (2008) Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J Geophys Res-Atmos 113(D20):16. https://doi.org/10.1029/2008jd009839

    Article  Google Scholar 

  60. Gat JR, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A (2003) Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern. Tellus Ser B-Chem Phys Meteorol 55(5):953–965. https://doi.org/10.1034/j.1600-0889.2003.00081.x

    Article  Google Scholar 

  61. Kurita N (2011) Origin of Arctic water vapor during the ice-growth season. Geophys Res Lett 38:5. https://doi.org/10.1029/2010gl046064

    Article  Google Scholar 

  62. Peng TR, Wang CH, Huang CC, Fei LY, Chen CTA, Hwong JL (2010) Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth Planet Sci Lett 289(3–4):357–366. https://doi.org/10.1016/j.epsl.2009.11.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank IAEA and WMO for data support and all the teachers and peers for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Liu, G., Meng, Y. et al. Temporal trends of deuterium excess in global precipitation and their environmental controls under a changing climate. J Radioanal Nucl Chem 331, 3633–3649 (2022). https://doi.org/10.1007/s10967-022-08414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08414-x

Keywords

Navigation