Skip to main content
Log in

A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

During last few years, researchers have been concentrating toward the estimation of stress–strain behavior of thin-film coatings using nanoindentation and finite element simulation. In present days, advancement of machine learning algorithms and artificial intelligence made it possible to implement a hybrid approach to extract the properties of a material in a more systematic way. The aim of this work is to find the optimum value of the constants of power-law plastic behavior of thin-film alloy coatings. In this study, an average load–displacement plot was obtained from nanoindentation tests of poly-alloy coatings. Then, a simulation data set was generated in ABAQUS according to design of experiment. A machine learning algorithm was used to generate the surrogate model correlating the constants of power-law plastic behavior as input and mean error between simulation and experimental results as output. Finally, optimization algorithm was used to find out the optimum values of constants of power-law plastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fischer-Cripps A C, Surf Coat Technol 200 (2006) 4153. https://doi.org/10.1016/j.surfcoat.2005.03.018.

    Article  CAS  Google Scholar 

  2. Oliver W C, and Pharr G M, J Mater Res 19 (2004) 3. https://doi.org/10.1557/jmr.2004.19.1.3.

    Article  CAS  Google Scholar 

  3. Bouzakis K D, Michailidis N, and Erkens G, Surf Coat Technol 142 (2001) 102. https://doi.org/10.1016/S0257-8972(01)01275-0.

    Article  Google Scholar 

  4. Dao M, Chollacoop N V, Van Vliet K J, Venkatesh T A, and Suresh S, Acta Mater 49 (2001) 3899. https://doi.org/10.1016/S1359-6454(01)00295-6.

    Article  CAS  Google Scholar 

  5. Daphalapurkar N P, Wang F, Fu B, Lu H, and Komanduri R, Exp Mech 51 (2011) 719. https://doi.org/10.1007/s11340-010-9373-z.

    Article  Google Scholar 

  6. Kang J J, Becker A A, and Sun W, Int J Mech Sci 62 (2012) 34. https://doi.org/10.1016/j.ijmecsci.2012.05.011.

    Article  Google Scholar 

  7. Yuan Z, Wang C, Li F, Hu Y, Guo Y, Chen Q, Wang Y, and Guo M, Adv Eng Mater 19 (2017) 1700097. https://doi.org/10.1002/adem.201700097.

    Article  CAS  Google Scholar 

  8. Goto K, Watanabe I, and Ohmura T, Int J Plast 116 (2019) 81. https://doi.org/10.1016/j.ijplas.2018.12.007.

    Article  Google Scholar 

  9. Bobzin K, Brögelmann T, Brugnara R H, Arghavani M, Yang T S, Chang Y Y, and Chang S Y, Surf Coat Technol 284 (2015) 310. https://doi.org/10.1016/j.surfcoat.2015.07.081.

    Article  CAS  Google Scholar 

  10. Hamim S U, and Singh R P, Inverse Probl Sci Eng 25 (2017) 363. https://doi.org/10.1080/17415977.2016.1161036.

    Article  CAS  Google Scholar 

  11. Jung J, Yoon J I, Park H K, Kim J Y, and Kim H S, Mater Sci Eng A 743 (2019) 382. https://doi.org/10.1016/j.msea.2018.11.106.

    Article  CAS  Google Scholar 

  12. Noii N, and Aghayan I, Int J Mech Sci 152 (2019) 465. https://doi.org/10.1016/j.ijmecsci.2019.01.010.

    Article  Google Scholar 

  13. Moy C K, Bocciarelli M, Ringer S P, and Ranzi G, Mater Sci Eng A 529 (2011) 119. https://doi.org/10.1016/j.msea.2011.09.005.

    Article  CAS  Google Scholar 

  14. Li F, Wang J A, and Brigham J C, Comput Geotech 61 (2014) 24. https://doi.org/10.1016/j.compgeo.2014.04.003.

    Article  Google Scholar 

  15. Wang Z L, and Adachi Y, Mater Sci Eng A 744 (2019) 661. https://doi.org/10.1016/j.msea.2018.12.049.

    Article  CAS  Google Scholar 

  16. Wang M, Gao L, Cao K, Wu J, and Wang W, Measurement 171 (2021) 108812. https://doi.org/10.1016/j.measurement.2020.108812.

    Article  Google Scholar 

  17. Weng J, Lindvall R, Zhuang K, Ståhl J E, Ding H, and Zhou J, Mech Mater 148 (2020) 103522. https://doi.org/10.1016/j.mechmat.2020.103522.

    Article  Google Scholar 

  18. He G Y, Sun D Y, Zang S L, Chen J, and Fang Z H, Surf Coat Technol 409 (2021) 126855. https://doi.org/10.1016/j.surfcoat.2021.126855.

    Article  CAS  Google Scholar 

  19. Chen Z, and Etsion I, Tribol Int 134 (2019) 435. https://doi.org/10.1016/j.triboint.2019.02.025.

    Article  Google Scholar 

  20. Balaraju J N, Rajam K S, Surf Coat Technol 195 (2005) 154. https://doi.org/10.1016/j.surfcoat.2004.07.068.

    Article  CAS  Google Scholar 

  21. Balaraju J N, Jahan S M, Anandan C, and Rajam K S, Surf Coat Technol 200 (2006) 4885. https://doi.org/10.1016/j.surfcoat.2005.04.053.

    Article  CAS  Google Scholar 

  22. Chen L, Ståhl J E, and Zhou J, J Mater Eng Perform 24 (2015) 4022. https://doi.org/10.1007/s11665-015-1672-1.

    Article  CAS  Google Scholar 

  23. Roy S, Mishra B M, and Bose G K, Mater Today Commun 29 (2021) 102991. https://doi.org/10.1016/j.mtcomm.2021.102991.

    Article  CAS  Google Scholar 

  24. Shi Z, Feng X, Huang Y, Xiao J, and Hwang K C, Int J Plast 26 (2010) 141. https://doi.org/10.1016/j.ijplas.2009.06.008.

    Article  CAS  Google Scholar 

  25. Malik A, Tikhamarine Y, Souag-Gamane D, Kisi O, and Pham Q B, Stoch Environ Res Risk Assess 34 (2020) 1755. https://doi.org/10.1007/s00477-020-01874-1.

    Article  Google Scholar 

  26. Chang C C, and Lin C J, ACM Trans Intell Syst Technol 2 (2011) 1. https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  27. Karaboga D, An Idea Based on Honey Bee Swarm for Numerical Optimization, vol 200. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005), p 1.

  28. Karaboga D, and Basturk B, J Glob Optim 39 (2007) 459. https://doi.org/10.1007/s10898-007-9149-x.

    Article  Google Scholar 

  29. Karaboga D, and Basturk B, Appl Soft Comput 8 (2008) 687. https://doi.org/10.1016/j.asoc.2007.05.007.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Council of Scientific and Industrial Research (CSIR-HRDG), Govt. of India, under Sanction No.: 22(0804)/19/EMR-II, dated 25.07.2019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriyo Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.M., Roy, S. A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis. Trans Indian Inst Met 75, 2939–2947 (2022). https://doi.org/10.1007/s12666-022-02674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02674-7

Keywords

Navigation