Skip to main content

Advertisement

Log in

Microstructure, Hardness, Wear Behaviours of A356/Fly Ash Composites Fabricated by Powder Metallurgy Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, we investigated the microstructure and wear behaviour of A356/fly ash composites fabricated using the powder metallurgy method. Fly ash was added to A356 Al alloy in four different ratios by weight and mechanically milled for 1 h. The milled composite powders were pre-formed under 800 MPa pressure and sintered for 1 h under vacuum at 590 °C. The microstructures of the produced samples were examined by optical microscope, SEM, EDS and XRD. The hardness measurements and wear tests were performed to determine the effect of fly ash content on the properties of the samples. As a result of the study, it was found that the hardness value increased with the increasing fly ash amount up to 2 wt% and decreased after 2 wt%. The wear test results were consistent with the hardness results. The maximum weight loss occurred in the composite containing 4 wt% fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sekhar R, and Singh T P, J Mater Res Technol, 4 (2015) 197. https://doi.org/https://doi.org/10.1016/j.jmrt.2014.10.013

    Article  Google Scholar 

  2. Kumar G V, Rao C S P, and Selvaraj N, J Miner Mater Charact Eng10 (2011) 59.

    Google Scholar 

  3. Vijayakumar S, and Karunamoorthy L, Mater Sci Technol, 29 (2013) 487. https://doi.org/https://doi.org/10.1179/1743284712Y.0000000167

    Article  CAS  Google Scholar 

  4. Idusuyi N & Olayinka JI, Dry sliding wear characteristics of aluminium metal matrix composites:a brief overview, J Mater Res Technol, 8 (2019) 3338. https://doi.org/https://doi.org/10.1016/j.jmrt.2019.04.017

    Article  CAS  Google Scholar 

  5. Samal P, Vundavilli P R, Meher A, and Mahapatra M M, J Manuf Process, 59 (2020)131. https://doi.org/https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  6. Meignanamoorthy M, Ravichandran M, Alagarsamy S V, Chanakyan C, Kumar S D, and Sakthivelu S, Mater Today Proc, 27 (2020) 1118. https://doi.org/https://doi.org/10.1016/j.matpr.2020.01.479

    Article  CAS  Google Scholar 

  7. Vani V V, and Chak S K, Manuf Review5 (2018) 7. https://doi.org/https://doi.org/10.1051/mfreview/2018001

    CAS  Google Scholar 

  8. Al-Aqeeli N, Abdullahi K, Suryanarayana C, Laoui T, and Nouari S, Mater Manuf Process, 28 (2013) 984. https://doi.org/https://doi.org/10.1080/10426914.2012.746703

    CAS  Google Scholar 

  9. Akçamlı N, and Şenyurt B, Ceram Int47 (2021) 6813. https://doi.org/https://doi.org/10.1016/j.ceramint.2020.11.024

    Article  CAS  Google Scholar 

  10. Dhanashekar M, Loganathan P, Ayyanar S, Mohan S R, and Sathish T, Mater Today Proc, 21 (2020) 1008. https://doi.org/https://doi.org/10.1016/j.matpr.2019.10.052

    Article  CAS  Google Scholar 

  11. Zamani N A B N, Iqbal A A, and Nuruzzaman D M, Mater Today Proc, 29 (2020) 190. https://doi.org/https://doi.org/10.1016/j.matpr.2020.05.541

    Article  CAS  Google Scholar 

  12. Baghchesara M A, and Abdizadeh H, J Mech Sci Technol, 26 (2012) 367. https://doi.org/https://doi.org/10.1007/s12206-011-1101-9

    Article  Google Scholar 

  13. Ozyurek D, and Ciftci I, Sci Eng Compos Mater, 18 (2011) 5. https://doi.org/https://doi.org/10.1515/secm.2011.003

    Article  CAS  Google Scholar 

  14. Fan L J, and Juang S H, Mater Design , 89 (2016) 941. https://doi.org/https://doi.org/10.1016/j.matdes.2015.10.070

    Article  CAS  Google Scholar 

  15. Kumar V, Gupta R D, and Batra N K, Procedia Mater Sci, 6 (2014) 1365. https://doi.org/https://doi.org/10.1016/j.mspro.2014.07.116

    Article  CAS  Google Scholar 

  16. Rajan T P D, Pillai R M, Pai B C, Satyanarayana K G, and Rohatgi P K, Compos Sci Technol, 67 (2007) 3369. https://doi.org/https://doi.org/10.1016/j.compscitech.2007.03.028

    Article  CAS  Google Scholar 

  17. Jailani S H, Rajadurai A, Mohan B, and Sornakumar T, Indian J Eng. Mater Sci, 22 (2015) 414.

    Google Scholar 

  18. Sharma V K, Singh R C, and Chaudhary R, Eng Sci Technol Inter J, 20 (2017) 1318. https://doi.org/https://doi.org/10.1016/j.jestch.2017.08.004

    Google Scholar 

  19. Nagaraj N, Mahendra K V, and Nagaral M, Mater Today Proc, 5 (2018) 3109. https://doi.org/https://doi.org/10.1016/j.matpr.2018.01.116

    Article  CAS  Google Scholar 

  20. Prasad K N P, and Ramachandra M, Mater Today Proc, 5 (2018) 2844. https://doi.org/https://doi.org/10.1016/j.matpr.2018.01.075

    Article  CAS  Google Scholar 

  21. Itskos G, Rohatgi P K, Moutsatsou A, DeFouw J D, Koukouzas N, Vasilatos, C, and Schultz B F, J Mater Sci, 47 (2012) 4042. https://doi.org/10.1007/s10853-012-6258-9

    Article  CAS  Google Scholar 

  22. Ravindran P, Manisekar K, Narayanasamy R, and Narayanasamy P, Ceram Int39 (2013) 1169. https://doi.org/https://doi.org/10.1016/j.ceramint.2012.07.041

    Article  CAS  Google Scholar 

  23. Kanthavel K, Sumesh K R, and Saravanakumar P, Alex Eng J, 55 (2016) 13. https://doi.org/https://doi.org/10.1016/j.aej.2016.01.024

    Article  Google Scholar 

  24. Siddhi Jailani H, Rajadurai A, Mohan B, Senthil Kumar A, and Sornakumar T, Powder Metall, 54 (2011) 474. https://doi.org/https://doi.org/10.1179/003258909X12502679013936

    Article  CAS  Google Scholar 

  25. Ravichandran M, Balasubramanian M, Chairman C A, Marichamy S, Dhinakaran V, and Stalin B, IOP Conf Ser Mater Sci Eng, 988 (2020) 012095. https://doi.org/10.1088/1757-899X/988/1/012095

    Article  CAS  Google Scholar 

  26. Rajan S T K, Balaji A N, Narayanasamy P, and Vettivel S C, Bull Pol Ac Tech, 66 (2018) 935. https://doi.org/10.24425/bpas.2018.125941

    CAS  Google Scholar 

  27. Kumar M S, Vasumathi M, Begum S R, Luminita S M, Vlase S, and Pruncu C I, J Mater Res Technol15 (2021) 1201. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.08.149

    Article  CAS  Google Scholar 

  28. Manimaran R, Jayakumar, I, Mohammad Giyahudeen R, and Narayanan L, Energy Sour Part A, 40 (2018) 887. https://doi.org/https://doi.org/10.1080/15567036.2018.1463319

    Article  Google Scholar 

  29. Wang Q, Min F, and Zhu J, J Wuhan Univ Technol Mater Sci Ed. J, 29 (2014) 1019. https://doi.org/10.1007/s11595-014-1036-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Yıldırım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, M., Solakoğlu, S. Microstructure, Hardness, Wear Behaviours of A356/Fly Ash Composites Fabricated by Powder Metallurgy Method. Trans Indian Inst Met 75, 2949–2957 (2022). https://doi.org/10.1007/s12666-022-02677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02677-4

Keywords

Navigation