Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo designed peptides for cellular delivery and subcellular localisation

Abstract

Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and biophysical characterisation of antiparallel CC dimers.
Fig. 2: X-ray crystal structures reveal antiparallel CC as designed.
Fig. 3: apCC-Di-B is cell penetrating and binds to apCC-Di-A in mammalian cells.

Similar content being viewed by others

Data availability

The CC database CC+ is open and publicly accessible. The coordinate and structure factor files for homomer-S, apCC-Di, apCC-Di-AB_var & apCC-Di-AB have been deposited in the Protein Data Bank with accession codes 7Q1Q, 7Q1R, 7Q1S and 7Q1T, respectively. All the raw data used in this publication has been deposited in the Zenodo repository (https://doi.org/10.5281/zenodo.6519961).

Code availability

The scripts used for bioinformatic analysis are available from a Zenodo repository (https://doi.org/10.5281/zenodo.6518524).

References

  1. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, E3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foight, G. W. et al. Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat. Biotechnol. 37, 1209–1216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva, D.-A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, A. J., Thomas, F., Shoemark, D., Woolfson, D. N. & Savery, N. J. Guiding biomolecular interactions in cells using de novo protein–protein interfaces. ACS Synth. Biol. 8, 1284–1293 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z. et al. De novo design of protein logic gates. Science 368, 78–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lebar, T., Lainšček, D., Merljak, E., Aupič, J. & Jerala, R. A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nat. Chem. Biol. 16, 513–519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bryan, C. M. et al. Computational design of a synthetic PD-1 agonist. Proc. Natl Acad. Sci. USA 118, e2102164118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Titeca, K., Lemmens, I., Tavernier, J. & Eyckerman, S. Discovering cellular protein–protein interactions: technological strategies and opportunities. Mass Spectrom. Rev. 38, 79–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, S. S., Yang, G. J., Wang, W., Leung, C. H. & Ma, D. L. The design and development of covalent protein–protein interaction inhibitors for cancer treatment. J. Hematol. Oncol. 13, 26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kahan, R., Worm, D. J., De Castro, G. V., Ng, S. & Barnard, A. Modulators of protein–protein interactions as antimicrobial agents. RSC Chem. Biol. 2, 387–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Park, J. H. & Oh, N. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51 (2014).

    Article  Google Scholar 

  19. Torres-Vanegas, J. D., Cruz, J. C. & Reyes, L. H. Delivery systems for nucleic acids and proteins: barriers, cell capture pathways and nanocarriers. Pharmaceutics 13, 428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Ruseska, I. & Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 11, 101–123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agrawal, P. et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 44, D1098–D1103 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Rhodes, C. A. et al. Cell-permeable bicyclic peptidyl inhibitors against NEMO-IκB kinase interaction directly from a combinatorial library. J. Am. Chem. Soc. 140, 12102–12110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dougherty, P. G. et al. Cyclic peptidyl inhibitors against CAL/CFTR interaction for treatment of cystic fibrosis. J. Med. Chem. 63, 15773–15784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buyanova, M. et al. Discovery of a bicyclic peptidyl Pan-Ras inhibitor. J. Med. Chem. 64, 13038–13053 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Dietrich, L. et al. Cell permeable stapled peptide inhibitor of Wnt signaling that targets β-catenin protein–protein interactions. Cell Chem. Biol. 24, 958–968.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Lupas, A. N. & Bassler, J. Coiled coils—a model system for the 21st century. Trends Biochem. Sci. 42, 1–11 (2016).

    Google Scholar 

  28. Woolfson, D. N. in Fibrous Proteins: Structures and Mechanisms (eds. Parry, D. A. D. & Squire, J. M.) 35–61 (Springer, 2017).

  29. Lamarre, B., Ravi, J. & Ryadnov, M. G. GeT peptides: a single-domain approach to gene delivery. Chem. Commun. 47, 9045–9047 (2011).

    Article  CAS  Google Scholar 

  30. Nakayama, N., Takaoka, S., Ota, M., Takagaki, K. & Sano, K. I. Effect of the aspect ratio of coiled-coil protein carriers on cellular uptake. Langmuir 34, 14286–14293 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Dhankher, A., Lv, W., Studstill, W. T. & Champion, J. A. Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J. Control. Release 339, 248–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Li, J. The coiled‐coil forming peptide (KVSALKE)5 is a cell penetrating peptide that enhances the intracellular delivery of proteins. Adv. Healthc. Mater. 11, 2102118 (2021).

    Article  Google Scholar 

  33. Zaccai, N. R. et al. A de novo peptide hexamer with a mutable channel. Nat. Chem. Biol. 7, 935–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fletcher, J. M. et al. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth. Biol. 1, 240–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rhys, G. G. et al. Navigating the structural landscape of de novo α-helical bundles. J. Am. Chem. Soc. 141, 8787–8797 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Edgell, C. L., Savery, N. J. & Woolfson, D. N. Robust de novo-designed homotetrameric coiled coils. Biochemistry 59, 1087–1092 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Dawson, W. M. et al. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem. Sci. 12, 6923–6928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majerle, A. et al. A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures. Proc. Natl Acad. Sci. USA 118, e2021899118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Testa, O. D., Moutevelis, E. & Woolfson, D. N. CC+: a relational database of coiled-coil structures. Nucleic Acids Res. 37, 1–8 (2008).

    Google Scholar 

  42. Oakley, M. G. & Kim, P. S. A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 37, 12603–12610 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Boyken, S. et al. De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificty. Science 399, 69–72 (2016).

    Google Scholar 

  44. Thomas, F., Boyle, A. L., Burton, A. J. & Woolfson, D. N. A set of de novo designed parallel heterodimeric coiled coils with quantified dissociation constants in the micromolar to sub-nanomolar regime. J. Am. Chem. Soc. 135, 5161–5166 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kumar, P. & Woolfson, D. N. Socket2: a program for locating, visualizing and analyzing coiled-coil interfaces in protein structures. Bioinformatics 37, 4575–4577 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  46. Watson, M. D., Peran, I. & Raleigh, D. P. A non-perturbing probe of coiled coil formation based on electron transfer mediated fluorescence quenching. Biochemistry 55, 3685–3691 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh, I., Hamilton, A. D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  48. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Shyu, Y. J., Liu, H., Deng, X. & Hu, C. D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Nakagawa, C., Inahata, K., Nishimura, S. & Sugimoto, K. Improvement of a venus-based bimolecular fluorescence complementation assay to visualize bfos–bjun interaction in living cells. Biosci. Biotechnol., Biochem. 75, 1399–1401 (2011).

    Article  CAS  Google Scholar 

  51. Falcón-Pérez, J. M., Nazarian, R., Sabatti, C. & Dell’Angelica, E. C. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J. Cell Sci. 118, 5243–5255 (2005).

    Article  PubMed  Google Scholar 

  52. Küey, C., Larocque, G., Clarke, N. I. & Royle, S. J. Unintended perturbation of protein function using GFP nanobodies in human cells. J. Cell Sci. 132, jcs234955 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cross, J. A., Chegkazi, M. S., Steiner, R. A., Woolfson, D. N. & Dodding, M. P. Fragment-linking peptide design yields a high-affinity ligand for microtubule-based transport. Cell Chem. Biol. 0, 1347–1355.e5 (2021).

    Article  CAS  Google Scholar 

  54. Monera, O. D., Zhou, N. E., Kay, C. M. & Hodges, R. S. Comparison of antiparallel and parallel two-stranded α-helical coiled-coils. Design, synthesis, and characterization. J. Biol. Chem. 268, 19218–19227 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Monera, O. D., Kay, C. M. & Hodges, R. S. Electrostatic interactions control the parallel and antiparallel orientation of α-helical chains in two-stranded α-helical coiled-coils. Biochemistry 33, 3862–3871 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Campbell, K. M. & Lumb, K. J. Complementation of buried lysine and surface polar residues in a designed heterodimeric coiled coil. Biochemistry 41, 7169–7175 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. McClain, D. L., Gurnon, D. G. & Oakley, M. G. Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure. J. Mol. Biol. 324, 257–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Gurnon, D. G., Whitaker, J. A. & Oakley, M. G. Design and characterization of a homodimeric antiparallel coiled coil. J. Am. Chem. Soc. 125, 7518–7519 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Pagel, K. et al. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide. Org. Biomol. Chem. 3, 1189–1194 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hadley, E. B. & Gellman, S. H. An antiparallel α-helical coiled-coil model system for rapid assessment of side-chain recognition at the hydrophobic interface. J. Am. Chem. Soc. 128, 16444–16445 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Negron, C. & Keating, A. E. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J. Am. Chem. Soc. 136, 16544–16556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nagarkar, R. P., Fichman, G. & Schneider, J. P. Engineering and characterization of a pH‐sensitive homodimeric antiparallel coiled coil. Pept. Sci. 112, e24180 (2020).

    Article  CAS  Google Scholar 

  63. Hakata, Y. et al. A novel leucine zipper motif-based hybrid peptide delivers a functional peptide cargo inside cells. Chem. Commun. 51, 413–416 (2015).

    Article  CAS  Google Scholar 

  64. Bode, S. A. et al. Coiled-coil-mediated activation of oligoarginine cell-penetrating peptides. ChemBioChem 18, 185–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Hakata, Y., Michiue, H., Ohtsuki, T., Miyazawa, M. & Kitamatsu, M. A leucine zipper-based peptide hybrid delivers functional Nanog protein inside the cell nucleus. Bioorg. Med. Chem. Lett. 29, 878–881 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Marky, L. A. & Breslauer, K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Mueller, U. et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. 130, 1–10 (2015).

    Google Scholar 

  68. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. Sect. D. Struct. Biol. 74, 85–97 (2018).

    Article  CAS  Google Scholar 

  69. Sparta, K. M., Krug, M., Heinemann, U., Mueller, U. & Weiss, M. S. XDSAPP2.0. J. Appl. Crystallogr. 49, 1085–1092 (2016).

    Article  Google Scholar 

  70. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  71. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. 66, 486–501 (2010).

    CAS  Google Scholar 

  72. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Cryst. 68, 352–367 (2012).

    CAS  Google Scholar 

  73. Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  74. Bernhardt, T. G. & De Boer, P. A. J. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48, 1171–1182 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.G.R. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 88899. J.A.C. is supported by the EPSRC-funded Bristol Centre for Doctoral Training in Chemical Synthesis (EP/G036764/1). H.F.T. is supported by the EPSRC- and BBSRC-funded Centre for Doctoral Training in Synthetic Biology (EP/L016494/1). M.P.D. is a Lister Institute of Preventative Medicine Fellow and work in his lab is supported by BBSRC (BB/S000917/1). We thank the University of Bristol School of Chemistry Mass Spectrometry Facility for access to the EPSRC-funded Bruker Ultraflex MALDI–TOF instrument (EP/K03927X/1), the BBSRC-funded BrisSynBio centre for access to peptide synthesis and a plate reader (BB/L01386X/1), and the Wolfson Bioimaging Facility for their assistance in this work. B.H. acknowledges financial support and allocation of beamtime by HZB and we thank the beamline staff at BESSY for assistance.

Author information

Authors and Affiliations

Authors

Contributions

G.G.R., J.A.C. and W.M.D. contributed equally to the project. G.G.R., W.M.D., B.H. and D.N.W. conceived and developed the project idea. G.G.R. conducted the bioinformatic analysis and designed the peptides. W.M.D. and G.G.R. synthesised and purified the peptides and conducted the biophysical analysis. W.M.D. conducted and analysed the fluorescence-quenching assays. H.F.T. and N.J.S. conducted and analysed the BiFC assay. S.S. and G.G.R. conducted the X-ray crystallography. J.A.C. and M.P.D. conducted and analysed all mammalian cell experiments. G.G.R, B.H. and D.N.W. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Birte Höcker or Derek N. Woolfson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Owen Davies, Krishna Kumar and Dehua Pei for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electron density map of apCC-Di crystal structure.

Fo-Fc difference map of the apCC-Di crystal structure represented as a grey wire mesh overlaid on a stick model. The map was contoured at 1 rmsd.

Extended Data Fig. 2 Electron density map of apCC-Di-AB crystal structure.

Fo-Fc difference map of the apCC-Di-AB crystal structure represented as a grey wire mesh overlaid on a stick model. The map was contoured at 1 rmsd.

Extended Data Fig. 3 The asymmetric unit of apCC-Di-AB_var is composed of 14 chains.

While there are minor differences between the surface-exposed residues of the seven dimer pairs, all the biological units are structurally similar (left). The high number of biological units in the asymmetric unit is a result of crystal packing. In the crystal form, apCC-Di-AB_var forms perpendicular layers of right-handed α-helical fibres (right). Between each dimer pair, the individual peptides self-associate to form KIH parallel interfaces, leading to alternating parallel and antiparallel interfaces.

Extended Data Fig. 4 Symmetry mates for the crystal structure of apCC-Di.

Four symmetry mates are depicted above that form a repeating pattern in the crystal structure. SOCKET 2 analysis of the structure reveals four antiparallel CC dimers. There are no inter-biological unit CC interactions.

Extended Data Fig. 5 Symmetry mates for the crystal structure of apCC-Di-AB.

Two symmetry mates are depicted above that form a repeating pattern in the crystal structure. SOCKET 2 analysis of the structure reveals two antiparallel CC dimers. There are no inter-biological unit CC interactions.

Extended Data Fig. 6 Cartoon representation of mutation positions in designed coiled-coil (CC) dimers for the fluorescence quenching assay.

For homomeric CCs, the fluorophore was incorporated near the N termini and a fluorescence quencher near the C termini. For parallel CCs (top left) this should lead to fluorescence, whereas for antiparallel CCs (top right) this should lead to quenching. For antiparallel heteromeric CCs, incorporating the fluorophore and fluorescence quencher near the same termini (bottom left) should lead to fluorescence, whereas incorporating at opposite termini should lead to quenching (bottom right).

Extended Data Fig. 7 Extended plots for the fluorescence-quenching assay for labelled apCC-Di, apCC-Di-AB containing additional controls.

(left) Fluorescence quenching assay for homomeric peptides. Controls include the parallel coiled coil CC-Di and swapping the fluorophore and the fluorescence quencher between the termini of apCC-Di. (right) Fluorescence quenching assay for the designed heteromeric peptides. The control peptides include labelling both apCC-Di-A and apCC-Di-B near the C-termini, which does not lead to quenching in an antiparallel orientation. Key: n and c indicate mutations near the N and C termini, respectively; 4CF, 4-Cyano-L-phenylalanine fluorophore; MSE, L-selenomethionine fluorescence quencher. Conditions: 100 μM concentration of each peptide, 50 mM sodium phosphate, pH 7.

Extended Data Fig. 8 Extended bimolecular fluorescence complementation (BiFC) assay containing controls for homomerisation of apCC-Di-A and apCC-Di-B, and controls for heteromerisation of CC-Di-A and CC-Di-B (a parallel heteromeric system).

BiFC assay for apCC-Di and apCC-Di-AB. V1 and V2 are N- and C-terminal fragments of the Venus yellow fluorescent protein, where V1 represents the V1 mutant. Peptide names that precede the Venus fragment name denote fusion to the C termini of the coiled coil, for example apCC-Di-B-V2. Values are normalised according to cell density (OD600) and are presented as mean values±1 SD from n ≥ 3 technical replicate measurements (dots).

Extended Data Fig. 9 Cell penetration of apCC-Di-B occurs at 4 °C and in the presence of endocytosis inhibitors.

a, Representative confocal images of HeLa cells treated for 1 h with 2 µM TAMRA-labelled apCC-Di-B at 37 oC and 4 °C. These representative images are taken from n = 3 biological replicates. b, The same for cells at 37 °C pre-incubated with 0.1% DMSO (as a control) and with endocytosis inhibitors 30 µM MiTMAB, 80 µM Dynasore, and 0.1% NaN3 in the DMEM before treatment with 2 µM TAMRA labelled apCC-Di-B peptide in media containing each of the inhibitors for 1 h. apCC-Di-B remains cell penetrating at 4 °C and in the presence of the inhibitors and at 37 °C, as shown by TAMRA fluorescence in the cytoplasm and nucleus. Scale bar 10 µm. These representative images are taken from n = 3 biological replicates.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–34 and Supplementary Notes.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhys, G.G., Cross, J.A., Dawson, W.M. et al. De novo designed peptides for cellular delivery and subcellular localisation. Nat Chem Biol 18, 999–1004 (2022). https://doi.org/10.1038/s41589-022-01076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01076-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing