Skip to main content
Log in

Sr and Pb Isotopic Compositions in Dolostones of the Lower Riphean Billyakh Group, Anabar Uplift: Step-Leaching Technique in Chemostratigraphy and Geochronology

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

This paper presents new age estimates and results obtained by the chemostratigraphic study of dolostones of the Billyakh Group, which consists of the Kotuikan and the Yusmastakh formations. The Billyakh Group forms the upper part of the Riphean section of the Anabar uplift in northern Siberia. The stepwise dissolution technique was used for the first time to determine the 87Sr/86Sr, 206Pb/204Pb, and 207Pb/204Pb isotopic ratios in dolostones. The Rb‒Sr systematics was studied by the chemical removal of about a third of the crushed sample (fraction L1) by the preliminary acid leaching in 0.2 N CH3COOH and the subsequent partial dissolution (fraction L2) of the remaining part of the sample in CH3COOH with the same concentration. The Pb‒Pb isotope systematics of dolostones was studied by the six-step dissolution of crushed samples in 0.5 N HBr. These procedures led to the removal of secondary carbonate material and greatly improved the quality of Sr chemostratigraphic and geochronological information. The initial 87Sr/86Sr ratios of the least altered carbonate material (fraction L2) of the Billyakh Group dolostones are 0.70502 ± 0.00029 in the Kotuikan Formation, 0.70519 ± 0.00026 in the lower subformation of the Yusmastakh Formation, and 0.70511 ± 0.00018 in the upper subformation of the Yusmastakh Formation. The Pb‒Pb age of early diagenesis of Kotuikan and Yusmastakh dolostones (1519 ± 18 Ma at MSWD = 1.8) was calculated from the results obtained for carbonate fractions L3–L6. Secondary carbonate fractions L1‒L2 are characterized by a Pb‒Pb age of 1466 ± 54 Ma at MSWD = 0.6. The δ13C values vary from ‒1 to ‒0.4‰ in dolostones of the Kotuikan Formation and from ‒0.4 to +0.8‰ in those of the Yusmastakh Formation (from ‒0.1 to +0.4‰ in the lower subformation and from ‒0.4 to +0.8‰ in the upper subformation). Comparison of these variations, as well as variations in the initial 87Sr/86Sr ratios in dolostones of the Kotuikan Formation and the Lower and Upper Yusmastakh subformations (0.70460‒0.70499, 0.70450‒0.70525, and 0.70462‒0.70523, respectively), does not make it possible to distinguish these units on the basis of chemostratigraphic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Adams, J.E. and Rhodes, M.L., Dolomitization by seepage refluxion, AAPG Bull., 1960, vol. 44, no. 12, pp. 1912–1920.

    Google Scholar 

  2. Al-Aasm, I.S. and Packard, J.J., Stabilization of early-formed dolomite: a tale of divergence from two Mississippian dolomites, Sediment. Geol., 2000, vol. 131, nos. 3–4, pp. 97–108.

    Article  Google Scholar 

  3. Asmerom, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, N.J., and Swett, K., Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 10, pp. 2883–2894.

    Article  Google Scholar 

  4. Azomani, E., Azmy, K., Blamey, N., Brand, U., and Al-Aasm, I., Origin of Lower Ordovician dolomites in eastern Laurentia: Controls on porosity and implications from geochemistry, Mar. Petrol. Geol., 2013, vol. 40, pp. 99–114.

    Article  Google Scholar 

  5. Babinski, M., Chemale, F.,Jr., and Van Schmus, W.R., The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrifero, Brazil, Precambrian Res., 1995, vol. 72, nos. 3–4, pp. 235–245.

    Article  Google Scholar 

  6. Babinski, M., Van Schmus, W.R., and Chemale, F., Jr. Pb‒Pb dating and Pb isotope geochemistry of Neoproterozoic carbonate rocks from the São Francisco basin, Brazil: implications for the mobility of Pb isotopes during tectonism and metamorphism, Chem. Geol., 1999, vol. 160, no. 3, pp. 175–199.

    Article  Google Scholar 

  7. Babinski, M., Vieira, L.C., and Trindade, R.I.F., Direct dating of the Sete Lagoas cap carbonate (Bambuı´ Group, Brazil) and implications for the Neoproterozoic glacial events, Terra Nova, 2007, vol. 19, no. 6, pp. 401–406.

    Article  Google Scholar 

  8. Badiozamani, K., The Dorag dolomitization model—Application to the middle Ordovician of Wisconsin, J. Sediment. Petrol., 1973, vol. 43, no. 4, pp. 965–984.

    Google Scholar 

  9. Bailey, T.R., McArthur, J.M., Prince, H., and Thirwall, M.F., Dissolution methods for strontium isotope stratigraphy: Whole-rock analysis, Chem. Geol., 2000, vol. 167, nos. 3–4, pp. 313–319.

    Article  Google Scholar 

  10. Baker, P.A. and Kastner, M., Constraints on the formation of sedimentary dolomite, Science, 1981, vol. 213, no. 4504, pp. 214–216.

    Article  Google Scholar 

  11. Bartley, J.K., Semikhatov, M.A., Kaufman, A.J., Knoll, A.H., Pope, M.C., and Jacobsen, S.B., Global events across the Mesoproterozoic–Neoproterozoic boundary: C and Sr isotopic evidence from Siberia, Precambrian Res., 2001, vol. 111, nos. 1–4, pp. 165–202.

    Article  Google Scholar 

  12. Bellefroid, E.J., Planavsky, N.J., Miller, N.R., Brand, U., and Wang, C., Case studies on the utility of sequential carbonate leaching for radiogenic strontium isotope analysis, Chem. Geol., 2018, vol. 497, pp. 88–99.

    Article  Google Scholar 

  13. Bibikova, E.V., Belov, A.N., and Rozen, O.M., Izotope dating of metamorphic rocks of the Anabar Shield, in Arkhei Aldanskogo shita i problemy rannei evolyutsii Zemli (The Archean of the Aldan Shield and Problems of Early Earth’s Evolution), Markov, M.S., Ed., Moscow: Nauka, 1988, pp. 122–133.

  14. Braithwaite, C.J.R., Dolomites, a review of origins, geometry and textures, Trans. R. Soc. Edinburgh, Earth Sci., 1991, vol. 82, no. 2, pp. 99–112.

    Article  Google Scholar 

  15. Chaudhuri, S. and Clauer, N., Strontium isotope compositions and potassium and rubidium contents of formation waters in sedimentary basins: Clues to the origin of the solutes, Geochim. Cosmochim. Acta, 1993, vol. 57, no. 3, pp. 429–437.

    Article  Google Scholar 

  16. Chen, D.Z., Qing, H.R., and Yang, C., Multistage hydrothermal dolomites in the middle Devonian (Givetian) carbonates from the Guilin area, South China, Sedimentology, 2004, vol. 51, no. 5, pp. 1029–1051.

    Article  Google Scholar 

  17. Chen, X., Zhou, Y., and Shields, G.A., Progress towards an improved Precambrian seawater 87Sr/86Sr curve, Earth-Sci. Rev., 2021, vol. 224, no. 103869.

  18. Davies, G.R. and Smith, L.B., Structurally controlled hydrothermal dolomite reservoir facies: an overview, AAPG Bull., 2006, vol. 90, no. 11, pp. 1641–1690.

    Article  Google Scholar 

  19. Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 3, pp. 1317–1329.

    Article  Google Scholar 

  20. Drever, J.I., The Geochemistry of Natural Water, Cambridge: Prentice Hall, 1982.

    Google Scholar 

  21. Ernst, R.E., Buchan, K.L., Hamilton, M.A., Okrugin, A.V., and Tomshin, M.D., Integrated paleomagnetism and U–Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: Implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia, J. Geol., 2000, vol. 108, no. 3, pp. 381–401.

    Article  Google Scholar 

  22. Ernst, R.E., Okrugin A.V., Veselovskiy, R.V., Kamo, S.L., Hamilton, M.A., Pavlov V.E., Soderlund, U., Chamberlain, K.R., and Rogers, K., The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U–Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks, Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 653–671.

    Article  Google Scholar 

  23. Feng, M., Wu, P., Qiang, Z., Liu, X., Duan, Y., and Xia, M., Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, Southwestern China, Mar. Petrol. Geol., 2017, vol. 82, pp. 206–219.

    Article  Google Scholar 

  24. Frei, R., Villa, I.M., Nagler, Th.F., Kramers, J.D., Przybylowicz, W.J., Prozesky, V.M., Hofmann, B.A., and Kamber, B.S., Single mineral dating by Pb–Pb step-leaching method. Assessing the mechanisms, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 2, pp. 393–414.

    Article  Google Scholar 

  25. Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E., and Saavedra, J., Sr, C, and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: Tectonic implications, Precambrian Res., 2004, vol. 131, nos. 1–2, pp. 55–71.

    Article  Google Scholar 

  26. Glukhovskii, M.Z., Kuz’min, M.I., Bayanova, T.B., Bazhenova, G.N., Lyalina, L.M., and Serov, P.A., Autonomous anorthosites of the Anabar Shield: Age, geochemistry, and formation mechanism, Dokl. Earth Sci., 2015, vol. 464, no. 2, pp. 1023–1028.

    Article  Google Scholar 

  27. Gorokhov, I.M., Diagenesis of carbonate sediments: Behavior of trace elements and strontium Isotopes, in Litologiya i paleogeografiya. Vyp. 4 (Lithology i paleogeography. Vol. 4), St. Petersburg: Sankt-Peterburg. Gos. Univ., 1996, pp. 141–164.

  28. Gorokhov, I.M., Semikhatov, M.A., Drubetskoy, Ye.R., Ivanovskaya, T.A., Kutyavin, E.P., Mel’nikov, N.N., Turchenko, T.L., Tsipurskiy, S.I., and Yakovleva, O.V., Rb–Sr and K–Ar ages of sedimentary geochronometers from the Lower Riphean of the Anabar massif, Izv. Akad. Nauk SSSR. Ser. Geol., 1991a, no. 7. pp. 17–32.

  29. Gorokhov, I.M., Semikhatov, M.A., Drubetskoy, Ye.R., Ivanovskaya, T.A., Kutyavin, E.P., Mel’nikov, N.N., Turchenko, T.L., Tsipurskiy, S.I., and Yakovleva, O.V., Rb–Sr and K–Ar dating of pelletal and dispersed phyllosilicates of Lower Riphean sedimentary strata of the Anabar Shield, Int. Geol. Rev., 1991b, vol. 33, no. 8, pp. 807–821.

    Article  Google Scholar 

  30. Gorokhov, I.M., Semikhatov, M.A., Baskakov, A.V., Kutyavin, E.P., Mel’nikov, N.N., Sochava, A.V., and Turchenko, T.L., Sr isotopic composition in Riphean, Vendian, and Lower Cambrian in Siberia, Stratigr. Geol. Correl., 1995, vol. 3, no. 1, pp. 1–33.

    Google Scholar 

  31. Gorokhov, I.M., Mel’nikov, N.N., Turchenko, T.L., and Kutyavin, E.P., Rb–Sr systematics of pelitic fractions in Lower Riphean claystones: Ust’-Ilya Formation, Anabar Massif, Northern Siberia, Lithol. Miner. Resour., 1997, vol. 32, no. 5, pp. 463–471.

    Google Scholar 

  32. Gorokhov, I.M., Semikhatov, M.A., Mel’nikov, N.N., Turchenko, T.L., Konstantinova, G.V., and Kutyavin, E.P., Rb–Sr geochronology of Middle Riphean shales, the Yusmastakh Formation of the Anabar Massif, Stratigr. Geol. Correl. 2001, vol. 9, no. 3, pp. 213–231.

    Google Scholar 

  33. Gorokhov, I.M., Semikhatov, M.A., Turchenko, T.L., Petrov, P.Yu., Mel’nikov, N.N., Konstantinova, G.V., and Kutyavin, E.P, Rb–Sr geochronology of Vendian shales, the Staraya Rechka Formation, Anabar Massif, Northern Siberia, Stratigr. Geol. Correl., 2010, vol. 18, no. 5, pp. 480–491.

    Article  Google Scholar 

  34. Gorokhov, I.M., Kuznetsov, A.B., Konstantinova, G.V., Lipenkov, G.V., Dubinina, E.O., and Bigun, I.V., Carbonate rocks from the Riphean–Vendian boundary deposits of the Anabar Uplift: Isotope (87Sr/86Sr, δ13C, δ18O) systematics and chemostratigraphic consequences, Dokl. Earth Sci., 2018, vol. 482, no. 2, pp. 1306–1310.

    Article  Google Scholar 

  35. Gorokhov, I.M., Kuznetsov, A.B., Semikhatov, M.A., Vasil’eva, I.M., Rizvanova, N.G., Lipenkov, G.V., and Dubinina, E.O., Early Riphean Billyakh Group of the Anabar Uplift, North Siberia: C–O isotopic geochemistry and Pb–Pb age of dolomites, Stratigr. Geol. Correl., 2019, vol. 27, no. 5, pp. 514–528.

    Article  Google Scholar 

  36. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Anabaro-Vilyuiskaya. List R-48 – Khatanga. Ob’’yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map, 3rd ed., Ser. A-nabar–Vilyui. Sheet R-48-Khatanga. Explanatory Note), St. Petersburg: Kart. Fabrika Vseross. Nauchno-Issled. Geol. Inst., 2016 [in Russian].

  37. Gregg, J.M. and Shelton, K.L., Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri, J. Sediment. Petrol., 1990, vol. 60, no. 4, pp. 549–562.

    Google Scholar 

  38. Guo, C., Chen, D., Qing, H., Dong, S., Li, G., Wang, D., Qian, Y., and Liu, C., Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian–Lower Ordovician carbonates in the northern Tarim Basin, China, Mar. Petrol. Geol., 2016, vol. 72, pp. 295–316.

    Article  Google Scholar 

  39. Gusev, N.I., Sergeeva, L.Yu., Larionov, A.N., and Skublov, S.G., Relics of the Eoarchean continental crust of the Anabar Shield, Siberian Craton, Petrology, 2020, vol. 28, no. 2, pp. 118–140.

    Article  Google Scholar 

  40. Hajri, H. and Abdallah, H., Fluid flow and late diagenesis of fault-infill carbonates in the Aptian dolostones at Jabel Semmama, Kasserine area, western-central Tunisia, Mar. Petrol. Geol., 2020, vol. 111, pp. 1–20.

    Article  Google Scholar 

  41. Hall, S. and Veizer, J., Geochemistry of Precambrian carbonates: VII. Belt Supergroup, Montana and Idaho, USA, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 4, pp. 667–677.

    Article  Google Scholar 

  42. Halverson, G.P., Dudás, F.Ö., Maloof, A.C., and Bowring, S.A., Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 256, nos. 3–4, pp. 103–129.

    Article  Google Scholar 

  43. Hardie, L.A., Dolomitization: A critical view of some current views, J. Sediment. Petrol., 1987, vol. 57, no. 1, pp. 166–183.

    Article  Google Scholar 

  44. Hayes, J.M., Kaplan, Y.R., and Wedeking, K.W., Precambrian organic geochemistry: Preservation and record, in Earth’s Earliest Biosphere, Princeton: Univ. Press, 1983, pp. 93–134.

    Google Scholar 

  45. Hsu, K.J. and Schneider, J., Progress report on dolomitization hydrology of Abu Dhabi sabkhas, Arabian Gulf, in The Persian Gulf. Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea, Purser, B.H., Ed., N.Y.: Springer, 1973, pp. 409–422.

    Google Scholar 

  46. Jahn, B.-M. and Cuvellier, H., Pb–Pb and U–Pb geochronology of carbonate rocks: An assessment, Chem. Geol., 1994, vol. 115, nos. 1–2, pp. 125–151.

    Article  Google Scholar 

  47. Jiang, W., Houb, M., and Wang, C., Strontium isotopic compositions of Cambrian (Upper Miaolingian–Furongian Series) dolomites from south-eastern Sichuan Basin, China: Significance of sources of dolomitizing fluids and timing of dolomitization, Mar. Petrol. Geol., 2019, vol. 109, pp. 408–418.

    Article  Google Scholar 

  48. Kah, L.C., Sherman, A.G., Narbonne, G.M., Knoll, A.H., and Kaufman, A.J., δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional lithostratigraphic correlations, Can. J. Earth Sci., 1999, vol. 36, no. 3, pp. 313–332.

    Article  Google Scholar 

  49. Kaufman, A.J., An ice age in the tropics, Nature, 1997, vol. 386, no. 6622, pp. 227–228.

    Article  Google Scholar 

  50. Kaufman, A.J. and Knoll, A.H., Neoproterozoic variations in the carbon isotopic composition of seawater: Stratigraphic and geochemical implications, Precambrian Res., 1995, vol. 73, nos. 1–4, pp. 27–49.

    Article  Google Scholar 

  51. Kaufman, A.J., Jacobsen, S.B., and Knoll, A.H., The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate, Earth Planet. Sci. Lett., 1993, vol. 120, nos. 3/4, pp. 409–430.

    Article  Google Scholar 

  52. Kaurova, O.K., Ovchinnikova, G.V., and Gorokhov, I.M., U–Th–Pb systematics of Precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments, Stratigr. Geol. Correl., 2010, vol. 18, no. 3, pp. 252–268.

    Article  Google Scholar 

  53. Khabarov, E.M., Ponomarchuk, V.A., Morozova, I.P., Varaksina, I.V., and Saraev, S.V., Fluctuations of the sea level and carbon isotope composition of carbonates in a Riphean petroliferous basin on the western margin of the Siberian Craton (Baikit uplift), Russ. Geol. Geophys., 2002, vol. 43, no. 3, pp. 211–239.

    Google Scholar 

  54. Khudoley, A.K., Molchanov, A.V., Okrugin, A.V., Berezhnaya, N.G., Matukov, D.I., and Sergeev, S.A., Evolution of the North Siberian Platform basement as evidenced from U–Pb data from detrital zircons in sandstones of the Mukun Group, Anabar Shield, in Fundamental’nye problemy geotektoniki. Mat. XL Tekton. Soveshch. Vyp. 2 (Proc. XL Tecton. Meet. “Fundamental Problems of Geotectonics”. Vol. 2), Moscow: GEOS, 2007, vol. 2, pp. 333–335.

  55. Khudoley, A., Chamberlain, K., Ershova, V., Sears, J., Prokopiev, A., MacLean, J., Kazakova, G., Malyshev, S., Molchanov, A., Kullerud, K., Toro, J., Miller, E., Veselovskiy, R., Lia, A., and Chipley, D., Proterozoic supercontinental restorations: constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton, Precambrian Res., 2015, vol. 259, pp. 78–94.

    Article  Google Scholar 

  56. Kırmacı, M.Z., Yıldız, M., Kandemir, R., and Eroğlu-Gümrük, T., Multistage dolomitization in Late Jurassic–Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization, Mar. Petrol. Geol., 2018, vol. 89, pp. 515–529.

    Article  Google Scholar 

  57. Knoll, A.H., Kaufman, A.J., and Semikhatov, M.A., The carbon-isotopic composition of Proterozoic carbonates: Riphean succession from Northwestern Siberia (Anabar massif, Turukhansk uplift), Am. J. Sci., 1995, vol. 295, no. 7, pp. 823–850.

    Article  Google Scholar 

  58. Komar, V.A., Stromatolites of Upper Precambrian rocks in the North Siberian Craton and their stratigraphic significance, in Tr. Geol. Inst. Akad. Nauk SSSR. Vyp. 154 (Trans. Geol. Inst. USSR Acad. Sci., Vol. 154), Moscow: Nauka, 1966 [in Russian].

  59. Kubler, B., “Crystallinité” de l’illite et mixed-layers: Brève révision, Schweiz. Min. Petrogr. Mitt., 1990, vol. 70, no. 1, pp. 89–93.

    Google Scholar 

  60. Kupecz, J.A. and Land, L.S., Late-stage dolomitization of the Lower Ordovician Ellenburger Group, West Texas, J. Sediment. Petrol., 1991, vol. 61, no. 4, pp. 551–574.

    Google Scholar 

  61. Kuznetsov A.B., Gorokhov, I.M., Semikhatov, M.A., Mel’nikov, N.N., and Kozlov, V.I., Strontium isotopic composition in the limestones of the Inzer Formation, Upper Riphean type section, Southern Urals, Dokl. Earth Sci., 1997, vol. 353, no. 2, pp. 319–324.

    Google Scholar 

  62. Kuznetsov A.B., Ovchinnikova, G.V., Gorokhov, I.M., Kaurova, O.K., Krupenin, M.T., and Maslov, A.V., Sr-isotope signature and Pb–Pb age of the Bakal Formation limestones in the Lower Riphean type section, the Southern Urals, Dokl. Akad. Nauk, 2003a, vol. 391, no. 6, pp. 819–822.

    Google Scholar 

  63. Kuznetsov A.B., Semikhatov, M.A., Gorokhov, I.M., Mel’nikov, N.N., Konstantinova, G.V., and Kutyavin, E.P., Sr isotope composition in carbonates of the Karatau Group, Southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean, Stratigr. Geol. Correl., 2003b, vol. 11, no. 5, pp. 415–449.

    Google Scholar 

  64. Kuznetsov A.B., Ovchinnikova, G.V., Krupenin, M.T., Gorokhov, I.M., Maslov, A.V., Kaurova, O.K., and Ellmies, R., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotopic characteristics and Pb–Pb age, Lithol. Miner. Resour., 2005, vol. 4, no. 3, pp. 195–215.

    Article  Google Scholar 

  65. Kuznetsov A.B., Semikhatov, M.A., Maslov, A.V., Gorokhov, I.M., Prasolov, E.M., and Krupenin, M.T., New data on Sr-and S-isotopic chemostratigraphy of the Upper Riphean type section (Southern Ural), Stratigr. Geol. Correl., 2006, vol. 14, no. 6, pp. 602–628.

    Article  Google Scholar 

  66. Kuznetsov A.B., Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Kaurova, O.K., Krupenin, M.T., Vasil’eva, I.M., Gorokhovskii, B.M., and Maslov, A.V., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 2, pp. 120–137.

    Article  Google Scholar 

  67. Kuznetsov A.B., Melezhik, V.A., Gorokhov, I.M., Melnikov, N.N., Konstantinova, G.V., Kutyavin, E.P., and Turchenko, T.L., Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield, Precambrian Res., 2010, vol. 182, no. 4, pp. 300–312.

    Article  Google Scholar 

  68. Kuznetsov A.B., Ovchinnikova, G.V., Gorokhov, I.M., Letnikova, E.F., Kaurova, O.K., and Konstantinova, G.V., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.

    Article  Google Scholar 

  69. Kuznetsov A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian). Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553–575.

    Article  Google Scholar 

  70. Kuznetsov A.B., Bekker, A., Ovchinnikova, G.V., Gorokhov, I.M., and Vasilyeva, I.M., Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion, Precambrian Res., 2017, vol. 298, pp. 157–173.

    Article  Google Scholar 

  71. Kuznetsov A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium isotope stratigraphy: Principles and state of the art, Stratigr. Geol. Correl., 2018. vol. 26, no. 4, pp. 367–386.

    Article  Google Scholar 

  72. Land, L.S., The isotopic and trace element geochemistry of dolomite: the state of the art, Concepts and models of dolomitization, Soc. Econ. Paleontol. Mineral., 1980, Spec. Publ. 28, pp. 87‒110.

    Google Scholar 

  73. Land, L.S., The dolomite problem: Stable and radiogenic isotope clues, in Lecture Notes in Earth Sciences. Vol. 43. Isotopic Signatures and Sedimentary Records, Clauer, N. and Chaudhuri, S., Eds., Berlin : Springer-Verlag, 1992, pp. 49–68.

  74. Li, D., Shields-Zhou, G.A., Ling, H.-F., and Thirlwall, M., Dissolution methods for strontium isotope stratigraphy: guidelines for the use of bulk carbonate and phosphorite rocks, Chem. Geol., 2011, vol. 290, nos. 3–4, pp. 133–144.

    Article  Google Scholar 

  75. Li, B., Wang, Q., and Zhang, X., Petrographic and geochemical evidence of the diagenetic environment and fluid source of dolomitization of dolomite: a case study from the Ma55 to Ma51 submembers of the Ordovician Majiagou Formation, central Yishan Slope, Ordos Basin, China, Carbonates and Evaporites, 2020, vol. 35, no. 2.

  76. Liu, C., Wang, Z., and Raub, T.D., Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation, South Australia, Chem. Geol., 2013, vol. 351, pp. 95–104.

    Article  Google Scholar 

  77. Liu, J., Jiang, Y., Liu, X., Yang, Z., Hou, X., Zhu, R., Wen, C., and Wang, F., Genesis of dolomite from Ma55–Ma510 sub-members of the Ordovician Majiagou Formation, in the Jingxi area in the Ordos Basin, Acta Geol. Sinica, 2017, vol. 91, no. 4, pp. 1363–1379 [in English].

    Article  Google Scholar 

  78. Ludwig, K.R., Users Manual for Isoplot/Ex. Version 2. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Spec. Publ., 1999, no.1a.

  79. Macdonald, F.A., Prave, A.R., Petterson, R., Smith, E.F., Pruss, S.B., Oates, K., Waechter, F., Trotzuk, D., and Fallick, A.E., The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, California, Geol. Soc. Am. Bull., 2013, vol. 125, nos. 7–8, pp. 1203–1223.

    Article  Google Scholar 

  80. Machel, H.G., Concepts and models of dolomitization: A critical reappraisal, Spec. Publ.—Geol. Soc. London, 2004, vol. 235, pp. 7–63.

    Article  Google Scholar 

  81. Machel, H.G. and Mountjoy, E.W., Chemistry and environments of dolomitization—A reappraisal, Earth Sci. Rev., 1986, vol. 23, no. 3, pp. 175–222.

    Article  Google Scholar 

  82. Makhloufi, Y. and Samankassou, E., Geochemical constraints on dolomitization pathways of the Upper Jurassic carbonate rocks in the Geneva Basin (Switzerland and France), Swiss J. Geosci., 2019, vol. 112, nos. 2–3, pp. 579–596.

    Article  Google Scholar 

  83. Manhes, G., Minster, J.E., and Allègre, C.J., Comparative uranium-thorium-lead and rubidium-strontium study of the Severin amphoterite: Consequences for Early Solar System chronology, Earth Planet. Sci. Lett., 1978, vol. 39, no. 1, pp. 14–24.

    Article  Google Scholar 

  84. McArthur, J.M., Thirlwall, M.F., Gale, A.S., Kennedy, W.J., Burnett, J.A., Mattey, D., and Lord, A.R., Strontium isotope stratigraphy for the Late Cretaceous: a new curve, based on the English Chalk, in High Resolution Stratigraphy, Hailwd, E. and Kid, R. Eds., Spec. Publ.—Geol. Soc. London, 1993, vol. 70, pp. 195–209.

    Article  Google Scholar 

  85. Mel’nikov, N.N., Efficiency of the double spiking technique in Pb mass spectrometric analysis for geochronology, Geochem. Int., 2010, no. 8, pp. 825–834.

  86. Misi, A., Kaufman, A.J., Veizer, J., Powis, K., Azmy, K., Boggiani, P.C., Gaucher, C., Teixeira, J.B.G., Sanches, A.L., and Iyer, S.S., Chemostratigraphic correlation of Neoproterozoic successions in South America, Chem. Geol., 2007, vol. 237, nos. 1–2, pp. 143–167.

    Article  Google Scholar 

  87. Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., and Bosserman, P.J., Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr, Geology, 1996, vol. 24, no. 10, pp. 917–920.

    Article  Google Scholar 

  88. Morrow, D.W., Diagenesis 1. Dolomite. Part 1: The chemistry of dolomitization and dolomite precipitation, Geosci. Can., 1982a, vol. 9, no. 1, pp. 5–13.

    Google Scholar 

  89. Morrow, D.W., Diagenesis 2. Dolomite. Part 2: Dolomitization models and ancient dolostones, Geosci. Can., 1982b, vol. 9, no. 2, pp. 95–107.

    Google Scholar 

  90. Morrow, D.W., Regional subsurface dolomitization: Models and constraints, Geosci. Can., 1999, vol. 25, no. 2, pp. 57–70.

    Google Scholar 

  91. Mueller, M., Igbokwe, O.A., Walter, B., Pederson, C.L., Riechelmann, S., Richter, D.K., Albert, R., Gerdes, A., Buhl, D., Neuser, R.D., Bertotti, G., and Immenhauser, A., Testing the preservation potential of early diagenetic dolomites as geochemical archives, Sedimentology, 2020, vol. 67, no. 2, pp. 849–881.

    Article  Google Scholar 

  92. Nagovitsin, K.E., Stanevich, A.M., and Kornilova, T.A., Stratigraphic setting and age of the complex of Tappania-bearing Proterozoic fossil biota of Siberia, Russ. Geol. Geophys., 2010, vol. 51, no. 11, pp. 1192–1198

    Article  Google Scholar 

  93. Ngia, N.R., Hu, M., and Gao, D., Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China, J. Asian Earth Sci., 2019, vol. 172, pp. 359–382.

    Article  Google Scholar 

  94. Nogueira, A.C.R., Riccomini, C., Sial, A.N., Moura, C.A.V., Trindade, R.I.F., and Fairchild, T.R., Carbon and strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil, Chem. Geol., 2007, vol. 237, nos. 1–2, pp. 186–208.

    Article  Google Scholar 

  95. Ohde, S. and Elderfield, H., Strontium isotope stratigraphy of Kita-daito-jima Atoll, North Phillipines Sea: implications for Neogene sea level change and tectonic history, Earth Planet. Sci. Lett., 1992, vol. 113, no. 4, pp. 473–486.

    Article  Google Scholar 

  96. Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Belyatskii, B.V., Vasil’eva, I.M., and Levskii, L.K., U–Pb systematics of Precambrian carbonates: the Riphean Sukhaya Tunguska Formation in the Turukhansk Uplift, Litol. Polezn. Iskop., 1995, no. 5, pp. 525–536.

  97. Ovchinnikova, G.V., Vasil’eva, I.M., Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., Gorokhovskii, B.M., and Levskii, L.K., U–Pb systematics on Proterozoic carbonate rocks: the Inzer Formation of the Upper Riphean stratotype (Southern Urals), Stratigr. Geol. Correl., 1998, vol. 6, no. 4, pp. 336–347.

    Google Scholar 

  98. Ovchinnikova, G.V., Vasil’eva, I.M., Semikhatov, M.A., Gorokhov, I.M., Kuznetsov, A.B. The Pb–Pb trail dating of carbonates with open U-Pb systems: the Min’yar Formation of the Upper Riphean Stratotype, Southern Urals, Stratigr. Geol. Correl., 2000, vol. 8, no. 6, pp. 529–543.

  99. Ovchinnikova, G.V., Semikhatov, M.A., Vasil’eva, I.M., Gorokhov, I.M., Kaurova, O.K., Podkovyrov, V.N., and Gorokhovskii, B.M., Pb–Pb age of limestones of the Middle Riphean Malgina Formation, the Uchur–Maya region of East Siberia, Stratigr. Geol. Correl., 2001, vol. 9, no. 6, pp. 527–539.

    Google Scholar 

  100. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil’eva, I.M., Gorokhov, I.M., Letnikova, E.F., and Gorokhovskii, B.M., U–Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River basin, Western Mongolia, Stratigr. Geol. Correl., 2012, vol. 20, no. 6, pp. 516–527.

    Article  Google Scholar 

  101. Paquette, J.L., Ionov, D.A., Agashev, A.M., Gannoun, A., and Nikolenko, E.I., Age, provenance and Precambrian evolution of the Anabar shield from U–Pb and Lu–Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton, Precambrian Res., 2017, vol. 301, pp. 134–144.

    Article  Google Scholar 

  102. Parrish, J.T., Hyland, E.G., Chan, M.A., and Hasiotis, S.T., Stable and clumped isotopes in desert carbonate spring and lake deposits reveal palaeohydrology: A case study of the Lower Jurassic Navajo Sandstone, south-western USA, Sedimentology, 2019, vol. 66, no. 1, pp. 32–52.

    Article  Google Scholar 

  103. Paula-Santos, G.M., Caetano-Filho, S., Babinski, M., Trindade, R.I.F., and Guacaneme, C., Tracking connection and restriction of West Gondwana São Francisco Basin through isotope chemostratigraphy, Gondwana Res., 2017, vol. 42, pp. 280–305.

    Article  Google Scholar 

  104. Peng, B., Li, Z., Li, G., Liu, C., Zhu, S., Zhang, W., Zuo, Y., Guo, Y., and Wei, X., Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China, Acta Geol. Sinica, 2018, vol. 92, no. 1, pp. 311–332 [in English].

    Article  Google Scholar 

  105. Petrov, P.Yu., Facies characteristics and terrigenous sedimentation features of the lower Riphean Mukun Group (Anabar Uplift, Siberia), Lithol. Miner. Resour., 2011, vol. 46, no. 2, pp. 165–181.

    Article  Google Scholar 

  106. Petrov, P.Yu., The Mukun basin: Settings, paleoenvironmental parameters, and factors controlling the early mesoproterozoic terrestrial sedimentation (Lower Riphean section of the Anabar uplift, Siberia), Lithol. Miner. Resour., 2014, vol. 49, no. 1, pp. 55–80.

    Article  Google Scholar 

  107. Pokrovsky, B.G. and Gertsev, D.O., Upper Precambrian carbonates with abnormally light carbon isotopic composition (the south of Central Siberia), Litol. Miner. Resurs., 1993, no. 1, pp. 64–80.

  108. Pokrovskii, B.G. and Vinogradov, V.I., Isotopic composition of strontium, oxygen and carbon in Upper Precambrian carbonates from the Anabar Uplift western flank (Kotuikan River), Dokl. Akad. Nauk SSSR, 1991, vol. 320, no. 5, pp. 1245–1250.

    Google Scholar 

  109. Puchkov, V.N., Krasnobaev, A.A., and Sergeeva, N.D., The new data on stratigraphy of the Riphean Stratotype, in Sb. Vseross. Konf. “Obshchaya stratigraficheskaya shkala Rossii: sostoyanie i problemy obustroistva,” Moskva, 23–25 maya 2013 g. (Proc. All-Rus. Conf. “General Stratigraphic Scale of Russia: Current State and Ways of Perfection,” Moscow, May 23–25, 2013), Fedonkin, M.A., Ed., Moscow: Geol. Inst. Ross. Akad. Nauk, 2013, pp. 70–72.

  110. Rasbury, E.T. and Cole, J.M., Directly dating geologic events: U–Pb dating of carbonates, Rev. Geophys., 2009, vol. 47, RG3001. https://doi.org/10.1029/2007RG000246

    Article  Google Scholar 

  111. Ray, J.S., Veizer, J., and Davis, W.J., C, O, Sr, and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events, Precambrian Res., 2003, vol. 121, nos. 1–2, pp. 103–140.

    Article  Google Scholar 

  112. Romero, J.A.S., Lafon, J.M., Nogueira, A.C.R., and Soares, J.L., Sr isotope geochemistry and Pb–Pb geochronology of the Neoproterozoic cap carbonates, Tangará da Serra, Brazil, Int. Geol. Rev., 2013, vol. 55, no. 2, pp. 185‒203.

    Article  Google Scholar 

  113. Ronkin Yu.L., Maslov, A.V., Kazak, A.P., Matukov, D.I., and Lepikhina, O.P., The Lower-Middle Riphean boundary in the southern Urals: New isotopic U–Pb (SHRIMP II) constraints, Dokl. Earth Sci., 2007, vol. 415, no. 2, pp. 835–840.

    Article  Google Scholar 

  114. Ross, G.M. and Villeneuve, M., Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle, Geology, 2003, vol. 115, no. 10, pp. 1191‒1217.

    Google Scholar 

  115. Rozen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., Bibikova, E.V., and Zlobin, V.L., Isotopic–geochemical and age heterogeneity of Early Proterozoic terranes, collision zones and related anorthosites in the Northeastern Siberian Craton, Russ. Geol. Geophys., 2000, vol. 41, no. 2, pp. 163–179.

    Google Scholar 

  116. Sarangi, S., Gopalan, K., and Kumar, S., Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution, Precambrian Res., 2004, vol. 132, nos. 1‒2, pp. 107–121.

    Article  Google Scholar 

  117. Sawaki, Y., Kawai, T., Shibuya, T., Tahata, M., Omori, S., Komiya, T., Yoshida, N., Hirata, T., Ohno, T., Windley, B.F., and Maruyama, S., 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland, Precambrian Res., 2010, vol. 179, nos. 1‒4, pp. 150–164.

    Article  Google Scholar 

  118. Schoenherr, J., Reuning, L., Hallenberger, M., Luders, V., Lemmens, L., Biehl, B.C., Lewin, A., Leupold, M., Wimmers, K., and Strohmenger, C.J., Dedolomitization: Review and case study of uncommon mesogenetic formation conditions, Earth-Sci. Rev., 2018, vol. 185, pp. 780–805.

    Article  Google Scholar 

  119. Sears, J.W., Chamberlain, K.R., and Buckly, S.N., Structural and U‒Pb geochronological evidence for 1.47 Ga rifting in the Belt basin, western Montana, Can. J. Earth Sci., 1998, vol. 35, no. 4, pp. 467‒475.

    Article  Google Scholar 

  120. Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., Konstantinova, G.V., Mel’nikov, N.N., Podkovyrov, V.N., and Kutyavin, E.P., Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: Determining factors, Stratigr. Geol. Correl., 2002, vol. 10, no. 1, pp. 1–41.

    Google Scholar 

  121. Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., Kuznetsov, A.B., Kaurova, O.K., and Petrov, P.Yu., Pb–Pb isochron age and Sr-isotopic signature of the Upper Yudoma carbonate sediments (Vendian of the Yudoma–Maya trough, Eastern Siberia), Dokl. Earth Sci., 2003, vol. 393, no. 8, pp. 1093–1097.

    Google Scholar 

  122. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., Bartley, J.K., and Davydov, Yu.V., The Yudoma Group of stratotype area: C-isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 435–459.

    Google Scholar 

  123. Semikhatov, M.A., Kuznetsov, A.B., Maslov, A.V., Gorokhov, I.M., and Ovchinnikova, G.V., Stratotype of the Lower Riphean, the Burzyan Group of the Southern Urals: Lithostratigraphy, paleontology, geochronology, Sr- and C-isotopic characteristics of its carbonate rocks, Stratigr. Geol. Correl., 2009, vol. 17, no. 6, pp. 574–601.

    Article  Google Scholar 

  124. Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: The evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568–579.

    Article  Google Scholar 

  125. Serebryakov, S.N., Osobennosti formirovaniya i razmeshcheniya rifeiskikh stromatolitov Sibiri (Specific Features of the Formation and Distribution of Riphean Stromatolites in Siberia), Moscow: Nauka, 1975 [in Russian].

  126. Sergeev, V.N., The distribution of microfossils assemblages in Proterozoic rocks, Precambrian Res., 2009, vol. 173, no. 1, pp. 212–222.

    Article  Google Scholar 

  127. Sergeev, V.N., Vorob’eva, N.G., and Petrov, P.Yu., New Riphean microbiotas of the Billyakh Group, the north Anabar region (Fomich River basin): to Riphean biostratigraphy of the Siberian Platform, Stratigr. Geol. Correl., 2007, vol.15, no. 1, pp. 1–11.

    Article  Google Scholar 

  128. Sergeev, V.N., Knoll, A.H., and Grotzinger, J.P., Paleobiology of the Mesoproterozoic Billiakh Group, Anabar uplift, Northern Siberia, Paleontol. Soc. Mem., 1995, vol. 39.

    Google Scholar 

  129. Shields, G., Working towards a new stratigraphic calibration scheme for the Neoproterozoic–Cambiran, Eclogae Geol. Helv., 1999, vol. 92, no. 2, pp. 221–233.

    Google Scholar 

  130. Shields, G. and Veizer, J., Precambrian marine carbonate isotope database: version 1.1, Geochem. Geophys. Geosyst., 2002, vol. 3, no. 6, pp. 1–12.

    Article  Google Scholar 

  131. Shpunt, B.R., Shapovalova, I.G., and Shamshina, E.A., Pozdnii dokembrii severa Sibirskoi platformy (Late Precambrian in the Northern Part of the Siberian Platform), Novosibirsk: Nauka, 1982 [in Russian].

  132. Sial, A.N., Gaucher, C., Silva, FilhoM.A., Ferreira, V.P., Pimentel, M.M., Lacerda, L.D., Silva Filho, E.V., and Cezario, W., C-, Sr-isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil, Precambrian Res., 2010, vol. 182, no. 4, pp. 351–372.

    Article  Google Scholar 

  133. Smelov, A.P., Kotov, A.B., Sal’nikova, E.B., Kovach, V.P., Berezkin, V.I., Kravchenko, A.A., Dobretsov, V.N., Velikoslavinskii, S.D., and Yakovleva, S.Z., Age and duration of the formation of the Billyakh tectonic mélange zone, Anabar Shield, Petrology, 2012, vol. 20, no. 3, pp. 286–300.

    Article  Google Scholar 

  134. Smith, P.E., Brand, U., and Farquhar, R.M., U‒Pb systematics and alteration trends of Pennsylvanian-aged aragonite and calcite, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 1, pp. 313–322.

    Article  Google Scholar 

  135. Sochava, A.V., Podkovyrov, V.N., and Vinogradov, D.P., Variation of carbon and oxygen isotope compositions in Vendian–Lower Cambrian carbonate rocks of the Ura Anticlinorium (Southern Siberian Platform), Litol. Polezn. Iskop., 1996, no. 3, pp. 279–289.

  136. Stepanyuk, L.M., U–Pb age of granites of the Anabar Shield, in Rannedokembriiskie obrazovaniya tsentral’noi chasti Arktiki i svyazannye s nimi poleznye iskopaemye (Early Precambrian Formations in the Central Part of the Arctic and Related Mineral Resources), Leningrad: Nauchno-Issled. Inst. Geol. Arktiki, 1974, pp. 76–83.

  137. Stepanyuk, L.M., U–Pb age of microcline granites of the Anabar Shield, Dokl. Akad. Nauk USSR, 1991, no. 10, pp. 127–129.

  138. Stratigraphy of Sinian and Cambrian deposits in the northeast of the Siberian Platform, in Tr. NIIGA. T. 101 (Trans. Res. Inst. Arctic Geol. Vol. 101), Tkachenko, B.V., Ed., Leningrad: Gostoptekhizdat, 1959 [in Russian].

  139. Thomas, C.W., Graham, C.M., Ellam, R.B., and Fallick, A.E., Chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: Constraints on depositional ages and time scales, J. Geol. Soc. London, 2004, vol. 161, no. 2, pp. 229‒242.

    Article  Google Scholar 

  140. Valladares, M.I., Ugidos, J.M., Barba, P., Fallick, A.E., and Ellam, R.M., Oxygen, carbon and strontium isotope records of Ediacaran carbonates in Central Iberia (Spain), Precambrian Res., 2006, vol. 147, nos. 3‒4, pp. 354–365.

    Article  Google Scholar 

  141. Veis, A.F. and Vorob’eva, N.G., Riphean and Vendian microfossils form the Anabar massif, Izv. Akad. Nauk SSSR. Ser. Geol., 1992, no. 1, pp. 114–130.

  142. Veis, A.F., Petrov P.Yu., and Vorob’eva, N.G., Geochronological and biostratigraphic approaches to reconstruction of Precambrian biota evolution: New finds of microfossils in Riphean sections on the western slope of the Anabar Uplift, Dokl. Earth Sci., 2001, vol. 378, no. 4, pp. 413–419.

    Google Scholar 

  143. Veizer, J., Trace elements and isotopes in sedimentary carbonates, in Carbonates: Mineralogy and Chemistry, Reeder, R., Ed., Rew. Mineral. (Mineral. Soc. Am), 1983, vol. 11, no. 1, pp. 265–299.

  144. Veizer, J. and Hoefs, J., The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 11, pp. 1387–1395.

    Article  Google Scholar 

  145. Verdel, C., Phelps, B., and Welsh, K., Rare earth element and 87Sr/86Sr step-leaching geochemistry of central Australian Neoproterozoic carbonate, Precambrian Res., 2018, vol. 310, pp. 229–242.

    Article  Google Scholar 

  146. Vorob’eva, N.G., Sergeev, V.N., and Petrov, P.Yu., Kotuikan Formation assemblage: a diverse organic-walled microbiota in the Mezoproterozoic Anabar succession, northern Siberia, Precambrian Res., 2015, vol. 256, no. 1, pp. 201–222.

    Article  Google Scholar 

  147. Walter, M.R., Veevers, J.J., Calver, C.R., Gorjan, P., and Hill, A.C., Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models, Precambrian Res., 2000, vol. 100, nos. 1–3, pp. 371–433.

    Article  Google Scholar 

  148. Warren, J., Dolomite: Occurrence, evolution and economically important association, Earth Sci. Rev., 2000, vol. 52, nos. 1–3, pp. 1–81.

    Article  Google Scholar 

  149. Wingate, M.T.D., Pisarevsky, S.A., Gladkochub, D.P., Donskaya, T.V., Konstantinov, K.M., Mazukabzov, A.M., and Stanevich, A.M., Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography, Precambrian Res., 2009, vol. 170, nos. 3–4, pp. 256–266.

    Article  Google Scholar 

  150. Yoshioka, H., Asahara, Y., Tojo, B., and Kawakami, S., Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: Implications for a glacial to interglacial transition, Precambrian Res., 2003, vol. 124, no. 1, pp. 69–85.

    Article  Google Scholar 

  151. Zaitseva, T.S., Semikhatov, M.A., Gorokhov, I.M., Sergeev, V.N., Kuznetsov, A.B., Ivanovskaya, T.A., Mel’nikov, N.N., and Konstantinova, G.V., Isotopic geochronology and biostratigraphy of Riphean deposits of the Anabar Massif, North Siberia, Stratigr. Geol. Correl., 2016, vol. 24, no. 6, pp. 549–574.

    Article  Google Scholar 

  152. Zaitseva, T.S., Kuznetsov, A.B., Ivanova, N.A., Maslennikov, M.A., Pustyl’nikova, V.V., Turchenko, T.L., and Nagovitsin, K.E., Rb–Sr age of Riphean glauconites of the Kamo Group (Baikit Anteclise, Siberian Craton), Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 1013–1017.

    Article  Google Scholar 

  153. Zlobin, M.N., On the subdivision of the Billyakh Group of the Sinian complex, Uch. Zap. NIIGA. Reg. Geol., 1968, vol. 13, pp. 135–143 [in Russian].

    Google Scholar 

  154. Zlobin, M.N. and Golovanov, N.P., Stratigraphic essay of Vendian–Cambrian rocks on the western slope of the Anabar Uplift (Kotuikan River), in Opornyi razrez verkhnedokembriiskikh otlozhenii zapadnogo sklona Anabarskogo podnyatiya (The Reference Section of Upper Precambrian Deposits of the Western Slope of the Anabar Uplift), Leningrad: NIIGA, 1970, pp. 6–20.

Download references

ACKNOWLEDGMENTS

We thank E.M. Prasolov (Center for Isotopic Research, Karpinsky Russian Geological Research Institute, St. Petersburg), who participated in the determination of C and O isotopic compositions in dolostones, and A.A. Ryasnyi (Karpinsky Russian Geological Research Institute, St. Petersburg) for help in the lithological and petrographic study of dolostones, as well as T.L. Turchenko and O.L. Galankina (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) for providing the data on chemical and mineralogical compositions of the insoluble noncarbonate component of dolostones. We are grateful to A.B. Kotov and S.I. Shkolnik for favorable reviews and useful suggestions which contributed to the improvement of this paper.

Funding

The work was supported by the Russian Science Foundation (project no. 18-17-00247-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gorokhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Reviewers: A.B. Kotov and S.I. Shkolnik

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhov, I.M., Kuznetsov, A.B., Vasil’eva, I.M. et al. Sr and Pb Isotopic Compositions in Dolostones of the Lower Riphean Billyakh Group, Anabar Uplift: Step-Leaching Technique in Chemostratigraphy and Geochronology. Stratigr. Geol. Correl. 30, 201–227 (2022). https://doi.org/10.1134/S0869593822040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593822040049

Keywords:

Navigation