Skip to main content
Log in

Provenance of the Upper Triassic–Lower Jurassic Flysch and the Middle–Upper Jurassic Coarse Clastic Sequences in the Cimmerides of the Crimean Mountains Based on the Results of U–Th–Pb Isotopic Dating of Detrital Zircon Grains

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

New results of U–Th–Pb isotopic dating of detrital zircon grains from the sandstones of the Upper Tauric Formation of the Crimean Mountains, belonging to the Lower Jurassic part of the Tauric Group, are presented. Comparison of the obtained age sets of detrital zircon grains with similar data for the clastic rocks of both lower and higher stratigraphic levels of the Cimmerides of the Crimean Mountains shows a significant difference between them. This reflects radical changes in the sources of sediment supply for the studied strata, which took place at the Triassic–Jurassic boundary and at the beginning of the Middle Jurassic. During the Late Triassic–Jurassic time, the sedimentary basins of the Crimean Mountains were formed directly on the southern (in present-day coordinates) continental margin of the East European segment of Eurasia. During the Late Triassic, the vast Scythian–Tauric megabasin was located here. Mostly shallow-water sediments accumulated in its northern part, in the Scythian sedimentary basin, and flysch deposition took place in its southern part, in the Tauric deep-water sedimentary basin. The clastic components of the flysch are dominated by the products of destruction of the crystalline basement complexes of the Sarmatian segment of the East European craton (EEC), the equivalents of the crystalline complexes exposed at present within the Ukrainian Shield and the Voronezh crystalline massif. The clastic material was supplied to the Tauric basin in transit via the Scythian basin. At the Late Triassic and Early Jurassic boundary, detrital material from the EEC ceased flowing into the Tauric sedimentary basin. But detrital material, the primary sources of which were the crystalline complexes of Gondwana and the peri-oceanic complexes of the Rheic and Paleo-Tethys oceans, started to flow into it. This means that the paleogeographic situation on the southern margin of the East European segment of Eurasia changed dramatically during the Early Jurassic. The Scythian–Tauric megabasin as it existed during the Late Triassic disappeared. The Dobrogea–Crimea Uplift emerged in its northern part (Scythian sedimentary basin). However, no significant changes in the depositional environment took place in its southern part (Tauric sedimentary basin). Deep-water flysch accumulation continued there during the Early Jurassic. This inherited sedimentary basin is hereinafter referred to as Late Tauric to emphasize the difference of its sedimentary fill from the fill of the Tauric basin. At the boundary of the Early and Middle Jurassic or at the very beginning of the Middle Jurassic, sediment accumulation ceased in the Late Tauric sedimentary basin, and the Upper Triassic and Lower Jurassic strata, successively accumulated in the Tauric and Late Tauric basins, underwent deformations. Later, the system of subbasins of the Crimean Mountains formed on the basement composed of these deformed complexes during the Middle and Late Jurassic. The clastic material that accumulated in the system of subbasins of the Crimean Mountains during the Middle and Late Jurassic was mostly of local (regional) origin, but a new source of detrital material, which supplied Permian–Triassic detrital zircon grains to these subbasins, appeared in addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Alekseev, A.S., Kuz’micheva, E.I., and Chernov, V.G., The first findings of Late Triassic hydroids in the Crimean Mountains, Vestn. Mosk. Univ. Ser. 4: Geol., 1989, no. 1, pp. 45–51.

  2. Andersen, T., Correction of common lead in U–Pb analyses that do not report 204Pb, Chem. Geol., 2002, vol. 192, pp. 59–79.

    Article  Google Scholar 

  3. Arkadiev, V.V., A new biostratigraphical chart of the Tithonian–Berriasian in the Eastern Crimea, Vestn. Sankt-Peterburg. Gos. Univ. Ser. 7, 2004, no. 4, pp. 36–44.

  4. Arkadiev, V.V. and Fedorova, A.A., New data on the age of the Taurian Group in the Bodrak River basin (SW Crimea), in Tr. Krymskoi Akad. Nauk (Trans. Crimean Acad. Sci.), Simferopol’: IT “Arial”, 2018, pp. 43–49.

  5. Arkadiev, V., Guzhikov, A., Baraboshkin, E., Savelieva, J., Feodorova, A., Shurekova, O., Platonov, E., and Manikin, A., Biostratigraphy and magnetostratigraphy of the upper Tithonian–Berriasian of the Crimean Mountains, Cretaceous Res., 2018, vol. 87, pp. 5–41.

    Article  Google Scholar 

  6. Astakhova, T.V., Bogaets, A.T., Gurevich, K.Ya., Dulub, V.G., Novik, N.N., Plokhotnyi, L.G., and Slyusar’, B.S., Triassic system, in Geologiya shel’fa USSR. Stratigrafiya (shel’f i poberezh’ya Chernogo morya) (Geology of the Shelf Zone of the USSR: Stratigraphy (Shelf and Coast of the Black Sea)), Shnyukov, E.F., Ed., Kiev: Naukova Dumka, 1984, pp. 34–41.

  7. Baraboshkin, E.Yu. and Degtyarev K.E., Psephites of the Taurian Group (the middle reaches of the Bodrak River), Vestn. Mosk. Univ. Ser. 4: Geol., 1988, no. 4, pp. 79–82.

  8. Baraboshkin E.Yu. and Piskunov V.K., The structure and formation conditions of the upper Jurassic succession in the area of Mount Pakhkal-Kaya (Crimea), Moscow Univ. Geol. Bull., 2010, vol. 65, no. 1, pp. 17–26.

    Article  Google Scholar 

  9. Barkhatov, B.P., On the relationship between deposits of the Taurian and Eski-Orda formations of the Crimean Mountains, Vestn. Leningrad. Univ., 1955, no. 7, pp. 123–135.

  10. Elhlou, S., Belousova, E.A., Griffin, W.L., Pearson, N.J., and O’Reily, S.Y., Trace element and isotopic composition of GJ-red zircon standard by laser ablation, Geochem. Cosmochim. Acta, 2006, vol. 70, no. 18, A158.

    Article  Google Scholar 

  11. Fikolina, L.A., Beletskii, S.V., Belokrys, O.A., Derenyuk, D.N., Krasnorudskaya, S.I., Obsharskaya, N.N., Korol’, B.I., Ivakin, M.N., Shevchuk, N.V., Dyachenko, L.N., Averina, V.N., Peresad’ko, I.N., Pupysheva, V.G., and Sevast’yanova, V.P., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000. Tret’e pokolenie. Seriya Skifskaya. List L-36 - Simferopol’. Ob"yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map of the Russian Federation, 3rd ed. Scythian Ser., Sheet L-36 (Simferopol). Explanatory Note), St. Peterburg: Vseross. Nauchno-Issled. Geol. Inst., 2019 [in Russian].

  12. Frolova, N.S., Spiridonov, A.V., Gual Peres, J., and Perepechina, O.V., Underwater landslide folding in the Taurian Series (Crimean Mountains), Moscow Univ. Geol. Bull., 2014, no. 6, pp. 458–461.

  13. Genc, S.C., A Triassic large igneous province in the Pontides, northern Turkey: Geochemical data for its tectonic setting, J. Asian Earth Sci., 2004, vol. 22, pp. 503–516.

    Article  Google Scholar 

  14. Geologicheskoe stroenie Kachinskogo podnyatiya Gornogo Kryma. Stratigrafiya mezozoya (Geological Structure of the Kacha Uplift, Mountainous Crimea. Mesozoic Sratigraphy), Mazarovich, O.A. and Mileev, V.S., Eds., Moscow: Mosk. Gos. Univ., 1989 [in Russian].

    Google Scholar 

  15. Geologiya SSSR. Tom 8. Krym (Geology of the USSR. Vol. 8, Crimea), Muratov, M.V., Ed., Moscow, Nedra, 1969 [in Russian].

  16. Georgiev, S., von Quadt, A., Heinrich, C.A., Peytcheva, I., and Marchev, P., Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICP-MS study of magmatic zircons from the Eastern Srednogorie, Bulgaria, Lithos, 2012, vol. 154, pp. 53–67.

    Article  Google Scholar 

  17. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., GLITTER: data reduction software for laser ablation IC-P‑MS, in Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P.J., Ed., Mineral. Assoc. Can. Short Course, 2008, vol. 40, pp. 308–311.

    Google Scholar 

  18. Gustomesov, V.A., Notes on Jurassic and Lower Cretaceous belemnites of the Bakhchisaray area of the Crimea, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 1967, vo. 42, no. 3, pp. 120–134.

    Google Scholar 

  19. Guynn, J. and Gehrels, G.E., Comparison of Detrital Zircon Age Distributions in the K-S Test, Tucson: Univ. Arizona, Arizona LaserChron Center, 2010.

    Google Scholar 

  20. Horstwood, M.S.A., Kosler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, Ch., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., and Schoene, B., Community-derived standards for LA-ICP-MS U–(Th–)Pb geochronology—Uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal. Res., 2016, vol. 40, no. 1, pp. 311–332.

    Article  Google Scholar 

  21. International Chronostratigraphic Chart, Int. Stratigraphy Com., 2020 (http://www.stratigraphy.org/ICSchart/ChronostratChart2020-01.pdf).

  22. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.

    Article  Google Scholar 

  23. Kaygusuz, A., Arslan, M., Sipahi, F., and Temizel, I., U–Pb zircon chronology and petrogenesis of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution, Gondwana Res., 2016, vol. 39, pp. 327–346.

    Article  Google Scholar 

  24. Kazakova, V.P., On the stratigraphy of Lower Jurassic deposits in the Bodrak River basin (Crimea), Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 1962, vol. XXXVII, no. 4, pp. 36–50.

    Google Scholar 

  25. Koronovskii, N.V. and Mileev, V.S., On the relationships between deposits of the Taurian Series and Eski-Orda Formation in the Bodrak River valley (Crimean Mountains), Vestn. Mosk. Univ. Ser. 4: Geol., 1974, no. 1, pp. 80–87.

  26. Kuznetsov, N.B., Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Romanyuk, T.V., and Rud’ko, S.V., Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea, Int. J. Earth Sci., 2019, vol. 108, no. 7, pp. 2407–2428.

    Article  Google Scholar 

  27. Ludwig, K.R., User’s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Spec. Publ., 2012, no. 5.

  28. Lysenko, V.I., The Triassic volcanism in the southwestern part of the Crimean Mountians, Uch. Zap. Krymskogo Federal. Univ. im. V.I. Vernadskogo. Geogr. Geol., 2019a, vol. 5(71). no. 3, pp. 306–325.

  29. Lysenko, V.I., The Triassic volcanism in the southwestern part of the Crimean Mountians, Uch. Zap. Krymskogo Federal. Univ. im. V.I. Vernadskogo. Geogr. Geol., 2019b, vol. 5(71), no. 4, pp. 230–253.

  30. Mayringer, F., Treloar, P.J., Gerdes, A., Finger, F., and Shengella, D., New age data from the Dzirula massif, Georgia: Implications for the evolution of the Caucasian Variscides, Am. J. Sci., 2011, vol. 311, pp. 404–441.

    Article  Google Scholar 

  31. Meinhold, G., Kostopoulos, D., Frei, D., Himmerkus, F., and Reischmann, T., U–Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: Palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean, Int. J. Earth Sci., 2010, vol. 99, no. 4, pp. 813–832.

    Article  Google Scholar 

  32. Mileev, V.S., Baraboshkin, E.Yu., Rozanov, S.B., and Rogov, M.A., Kimmerian and Alpine tectonics of the Crimean Mountains, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2006, vol. 81, no. 3, pp. 22–33.

    Google Scholar 

  33. Morozova, E.B., Sergeev, S.A., and Savel’ev, A.D., Cretaceous and Jurassic intrusions in Crimean Mountains: The first data of U–Pb (SIMS SHRIMP) dating, Dokl. Earth Sci., 2017, vol. 474, no. 1, pp. 530–534.

    Article  Google Scholar 

  34. Muratov, M.V., On the stratigraphy of Triassic and Lower Jurassic deposits of the Crimea, Izv. Vuzov. Geol. Razved., 1959, no. 11, pp. 31–41.

  35. Muratov, M.V., Snegireva, O.V., and Uspenskaya, E.A., Mediterranean Geosynclinal Belt. Crimea–Caucasus. Region. Crimea, in Stratigrafiya SSSR. Yurskaya sistema (Stratigraphy of the USSR. The Jurassic System), Krymgol’ts, G.Ya., Ed., Moscow: Nedra, 1972, pp. 143–154.

  36. Naidin, D.P., New findings of Early Jurassic belemnites in the Taurian Series of the Crimea, Vestn. Mosk. Univ. Ser. 4: Geol., 1964, no. 6, pp. 67–69.

  37. Nikishin, A.M., Alekseev, A.S., Baraboshkin, E.Yu., Bolotov, S.N., Kopaevich, L.F., Nikitin, M.Yu., Panov, D.I., Fokin, P.A., Gabdullin, R.R., and Gavrilov, Yu.O., Geologicheskaya istoriya Bakhchisaraiskogo raiona Kryma (Geological Evolution of the Bakhchysarai District, Crimea), Moscow: Mosk. Gos. Univ., 2006 [in Russian].

  38. Nikishin, A.M., Okay, A., Tuysuz, O., Demirer, A., Wannier, M., Amelin, N., and Petrov, E., The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 1: Basins structure and fill, Mar. Petrol. Geol., 2015a. https://doi.org/10.1016/j.marpetgeo.2014.08.017

  39. Nikishin, A.M., Okay, A., Tuysuz, O., Demirer, A., Wannier, M., Amelin, N., and Petrov, E., The black sea basins structure and history: new model based on new deep penetration regional seismic data. Part 1: basins structure and fill, Mar. Petrol. Geol., 2015b. https://doi.org/10.1016/j.marpetgeo.2014.08.018

  40. Nikishin, A.M., Wannier, M., Alekseev, A.S., Almendinger, O.A., Fokin, P.A., Gabdullin, R.R., Khudoley, A.K., Kopaevich, L.F., Mityukov, A.V., Petrov, E.I., and Rubsova, E.V., Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. Tectonic Evolution of the Eastern Black Sea and Caucasus, Spec. Publ.—Geol. Soc. London, 2015c, vol. 428. https://doi.org/10.1144/SP428.1

  41. Nikishin, A.M., Makhatadze, G.V., Gabdullin, R.R., Khudolei, A.K., and Rubtsova, E.V., Bitak conglomerates as a clue for understanding the Middle Jurassic geological history of Crimea, Moscow Univ. Geol. Bull., 2016, vol. 72, no. 6, pp. 18–27.

    Article  Google Scholar 

  42. Nikishin, A.M., Romanyuk, T.V., Moskovskii, D.V., Kuznetsov, N.B., Kolesnikova, A.A., Dubenskii, A.S., Sheshukov, V.S., and Lyapunov, S.M., Upper Triassic Sequences of the Crimean Mountains: First Results of U–Pb Dating of Detrital Zircons, Moscow Univ. Geol. Bull., 2020, vol. 75, no. 2, pp. 220–236.

    Article  Google Scholar 

  43. Okay, A.I. and Nikishin, A.M., Tectonic evolution of the southern margin of Laurasia in the Black Sea region, Int. Geol. Rev., 2015, vol. 57, nos. 5–8, pp. 1051–1076. https://doi.org/10.1080/00206814.2015.1010609

    Article  Google Scholar 

  44. Okay, A. and Topuz, G., Variscan orogeny in the Black Sea region, Int. J. Earth Sci., 2016. https://doi.org/10.1007/s00531-016-1395-z

  45. Panov, D.I., Stratigraphy of Triassic and Lower–Middle Jurassic deposits of the Lozovaya Zone of the Crimean Mountains, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2002, vol. 77, no. 2, pp. 13–25.

    Google Scholar 

  46. Panov, D.I., Burkanov, E.I., Gaiduk, V.V., and Il’kevich, D.G., New data on geology of Triassic and Lower Jurassic Deposits in the interfluve of the Marta and Bodrak rivers (the SW Mountain Crimea), Vestn. Mosk. Univ. Ser. 4: Geol., 1978, no. 1, pp. 47–55.

  47. Panov, D.I., Bolotov, S.N., Kosorukov, V.L., Kamzolkin, V.A., Pikulik, E.A., and Shikhanov, S.E., Stratigraphy and Structure of the Tavr Group (Upper Triassic-Lias) of Kacha Uplift, South-Western Crimea, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2009, no. 5(84), pp. 52–73.

  48. Peytcheva, I., Tacheva, E., von Quadt, A., and Nedialkov, R., U–Pb zircon and titanite ages and Sr–Nd–Hf isotope constraints on the timing and evolution of the Petrohan-Mezdreya pluton (Western Balkan Mts, Bulgaria), Geol. Balcanica, 2018, vol. 47, no. 2, pp. 25–46.

    Article  Google Scholar 

  49. Popov, D.V., Brovchenk, V.D., Nekrylov, N.A., Plechov, P.Yu., Spikings, R.A., Tyutyunnik, O.A., Krigman, L.V., Anosova, M.O., Kostitsyn, Y.A., and Soloviev, A., Removing a mask of alteration: geochemistry and age of the Karadag volcanic sequence in SE Crimea, Lithos, 2019, vol. 324, pp. 371–384.

    Article  Google Scholar 

  50. Promyslova, M.Yu., Demina, L.I., Bychkov, A.Yu., Gushchin, A.I., Koronovskii, N.V., and Tsarev, V.V., Ophiolitic association of Cape Fiolent area, southwestern Crimea, Geotectonics, 2016, vol. 50, no. 1, pp. 21–34.

    Article  Google Scholar 

  51. Romanyuk, T.V., Kuznetsov, N.B., Belousova, E.A., Gorozhanin, V.M., and Gorozhanina, E.N., Paleotectonic and paleogeographic conditions for the accumulation of the Lower Riphean Ai Formation in the Bashkir uplift (Southern Urals): the TerraneChrone® detrital zircon study, Geodynam.Tectonophys., 2018, vol. 9, no. 1, pp. 1–37.

    Article  Google Scholar 

  52. Romanyuk, T.V., Kuznetsov, N.B., Rud’ko, S.V., Kolesnikova, A.A., Moskovskii, D.V., Dubenskii, A.S., Sheshukov, V.S., and Lyapunov, S.M., Stages of Carboniferous–Triassic magmatism within the Black Sea region based on isotope-geochronological study of detrital zircons from Jurassic coarse clastic strata of the Mountainous Crimea, Geodynam. Tectonophys., 2020, vo. 11, no. 3, pp. 453–473. https://doi.org/10.5800/GT-2020-11-3-XXXX

    Article  Google Scholar 

  53. Rud’ko, S.V., Upper Jurassic rock depositional settings in the Baidar valley and evolution of the Crimean carbonate platform, Lithol. Miner. Resour., 2018, no. 4, pp. 307–323.

  54. Rud’ko, S.V., Kuznetsov, N.B., Belousova, E.A., and Romanyuk, T.V., Age, Hf-isotope systematic of detrital zircons and the sources of conglomerates of the Southern Demerdzhi Mountain, Mountainous Crimea, Geotectonics, 2019, vol. 53, no. 5, pp. 569–587.

    Article  Google Scholar 

  55. Savu, H., The North Dobrogea granite province: Petrology and origin of its rocks, Rev. Roum. Géologie, 2012, vol. 56, nos. 1–2, pp. 3–15.

    Google Scholar 

  56. Sayit, K., Goncuoglu, M.C., and Furman, T., Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: Geochemical implications from the Karakaya subduction/accretion Complex, Northern Turkey, Lithos, 2010, vol. 119, pp. 501–511.

    Article  Google Scholar 

  57. Sheremet, Ye., Sosson, M., Muller, C., Gintov, O., Murovskaya, A., and Yegorova, T., Key problems of stratigraphy in the Eastern Crimea Peninsula: some insights from new dating and structural data, in Tectonic Evolution of the Eastern Black Sea and Caucasus, Sosson, M., Stephenson, R.A., and Adamia, S.A., Eds., Spec. Publ.—Geol. Soc. London, 2016, vol. 428. https://doi.org/10.1144/SP428.14

  58. Shvanov, N.N., Lithostratigraphy and structure of the Taurian Series in the Bodrak River basin (Crimea), Vestn. Leningrad. Univ. Ser. Geol. Geogr., 1966, vol. 1, pp. 153–156.

  59. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, pp. 1–35.

    Article  Google Scholar 

  60. Slavin, V.I., Geological history of the Crimean Peninsula in the Triassic period, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 1986, vol. 61, no. 6, pp. 46–50.

    Google Scholar 

  61. Spiridonov, E.M., Fedorov, T.O., and Ryakhovskii, V.M., Magmatic complexes of the Mountain Crimea. Paper 1, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol.,1990, vol. 65, no. 4, pp. 119–133.

    Google Scholar 

  62. Stafeev, A.N., Sukhanova, T.V., Latysheva, I.V., Kosorukov, V.L., Rostovtseva, Yu.I., and Smirnova, S.B., New data on the geology of the Lozovoe zone (Upper Triassic–Middle Jurassic) of the Crimean Mountains, Moscow Univ. Geol. Bull., 2015, vol. 70, no. 5, pp. 386–398.

    Article  Google Scholar 

  63. Sunal, G., Satir, M., Natal’in, B., and Toraman, E., Paleotectonic position of the Strandja Massif and surrounding continental blocks based on zircon Pb–Pb age studies, Int. Geol. Rev., 2008, vol. 50, pp. 519–545.

    Article  Google Scholar 

  64. Tikhomirov, P.L., Chalot-Prat, F., and Nazarevich, B.P., Triassic volcanism in the Eastern Fore-Caucasus: Evolution and geodynamic interpretation, Tectonophysics, 2004, vol. 381, pp. 119–142.

    Article  Google Scholar 

  65. Turov, A.V., Komarov, V.N., Andrukhovich, A.O., and Sharoyko, Yu.A., On new finds of Lower Jurassic ammonites in the eastern part of the Bakhchsarai district of the Crimea, Izv. Vuzov. Geol. Razved., 2002, no. 2, pp. 23–28.

  66. Ustaomer, P.A., Ustaomer, T., and Robertson, A.H.F., Ion Probe U–Pb dating of the Central Sakarya basement: a peri-Gondwana terrane intruded by late Lower Carboniferous subduction/collision related granitic rocks, Turkish J. Earth Sci. Black Sea Spec. Iss., vol. 21, no. 2012, pp. 905–932.

  67. Ustaomer, P.A., Ustaomer, T., Robertson, A.H.F., and Gerdes, A., Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya Complex, NW Turkey, Int. J. Earth Sci., 2016, vol. 105, pp. 7–38.

    Article  Google Scholar 

  68. Wiedenbeck, M., Allen, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J.C., and Speigel, W., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses, Geostand. Newsl., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  69. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, R., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skar, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., and Zheng, Y.F., Further characterization of the 91500 zircon crystal, Geostand. Geoanal. Res., 2004, vol. 28, pp. 9–39.

    Article  Google Scholar 

  70. Yanin, B.T., New data on the geological structure of the Bakhchisaray district (Crimea), Vestn. Mosk. Univ. Ser. 4: Geol., 1976, no. 5, pp. 41–49.

  71. Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Gunther, D., Fontaine, G.H., Liu, X.-M., and Diwu, C.-R., Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS, Chem. Geol., 2008, vol. 247, pp. 100–118.

    Article  Google Scholar 

  72. Yudin, V.V., Remizov, D.N., Arkadiev, V.V., and Yurovsky, Yu.G., Foreign “discoveries” in geology of the Crimea, Regional. Geol. Metallog., 2016, no. 68, pp. 73–81.

  73. Zaika-Novatskii, V.S. and Solov’ev, I.V., Eski-Orda mixtite of the Crimean foothills, Visn. Kiïv. Univ., Ser. Geol., 1988, no. 7, pp. 30–37.

Download references

Funding

The studies were performed in compliance with the State Assignment for the Geological Institute, Russian Academy of Sciences, and the Schmidt Joint Institute of Physics of the Earth, Russian Academy of Sciences. Fieldwork and isotope analyses were supported by the Russian Foundation for Basic Research (project no. 19-05-00284). Data collection and analysis for the Black Sea–Balkan–Anatolia region were supported by the MegaGrant MON RF (project no. 075-15-2019-1883, Orogeny: Formation and Growth of Continents and Supercontinents). The processing of the primary results of isotope analyses and the preparation of the publication were carried out as part of the research program for the Academy of Engineering, People’s Friendship University of Russia (project “5-100,” recipient N.B. Kuznetsov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Reviewers: A.S. Alekseev, E.Yu. Baraboshkin, and A.A. Sorokin

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.B., Romanyuk, T.V., Nikishin, A.M. et al. Provenance of the Upper Triassic–Lower Jurassic Flysch and the Middle–Upper Jurassic Coarse Clastic Sequences in the Cimmerides of the Crimean Mountains Based on the Results of U–Th–Pb Isotopic Dating of Detrital Zircon Grains. Stratigr. Geol. Correl. 30, 228–249 (2022). https://doi.org/10.1134/S0869593822040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593822040050

Keywords:

Navigation