Skip to main content

Advertisement

Log in

Simplified DC voltage sensorless control of single-phase PFC converters in EV chargers

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A novel method for controlling the output DC link voltage of a single-phase power factor correction (PFC) converter without using a DC voltage sensor for electric vehicle (EV) charging is proposed in this paper. The conventional boost PFC converter normally uses three expensive sensors, i.e., at the input voltage, the input current, and the output voltage. These sensors are used to regulate the power quality and maintain system stability. To reduce the cost and hardware complexity in the power converter, a DC voltage sensorless control using an estimator is proposed. This method utilizes the available input voltage and current signals to predict the output DC link voltage. This predicted output voltage contains an average DC component superimposed with a small ripple content at double the line frequency (2f). The proposed control method tracks the reference sinewave signal to maintain a high-power factor. The converter also exhibits very stable behavior under transient load variations. Simulated and experimental validation results obtained with a 1 kW prototype PFC converter are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yilmaz, M., Krein, P.T.: Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28, 2151–2169 (2013)

    Article  Google Scholar 

  2. Morrow, K., Darner, D., Francfort, J.: U.S. Department of energy vehicle technologies program—advanced vehicle testing activity—plug-in hybrid electric vehicle charging infrastructure review. (2008) https://doi.org/10.2172/946853.

  3. Gautam, D., Musavi, F., Edington, M., Eberle, W., Dunford, W.G.: An automotive on-board 3.3 kW battery charger for PHEV application, in 2011 IEEE Vehicle Power and Propulsion Conference (2011). https://doi.org/10.1109/VPPC.2011.6043192.

  4. Part 3.2: Limits—limits for harmonic current emissions, international standard, edition. 1, IEC 61000-3-2, 1998–2004.

  5. Koo K.-W., Kim, D.-H., Woo, D.G., Lee, B.-K.: Topology comparison for 6.6 kW on board charger: performance, efficiency, and selection guideline, in 2012 IEEE Vehicle Power and Propulsion Conference, IEEE, 2012. https://doi.org/10.1109/VPPC.2012.6422583

  6. Praneeth, A.V.J.S., Williamson, S.S.: A review of front-end AC-DC topologies in universal battery charger for electric transportation, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, 2018. https://doi.org/10.1109/ITEC.2018.8450186

  7. Chen, H.-C., Lin, C.-C., Liao, J.-Y.: Modified single-loop current sensor less control for single-phase boost-type SMR with distorted input voltage. IEEE Trans. Power Electron. 26, 1322–1328 (2011)

    Article  Google Scholar 

  8. Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I.: Direct power control of PWM converter without power source voltage sensors, in IAS’96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting (IEEE). https://doi.org/10.1109/IAS.1996.560196.

  9. Qi, W., Li, S., Tan, S.C., Hui, S.Y.: Design considerations for voltage sensor less control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Ind. Electron. 67, 1878–1889 (2020)

    Article  Google Scholar 

  10. González-Castaño, C., Restrepo, C., Sanz, F., Chub, A., Giral, R.: DC voltage sensor less predictive control of a high-efficiency PFC single-phase rectifier based on the versatile buck-boost converter. Sensors 21, 5107 (2021)

    Article  Google Scholar 

  11. Chen, H.-C.: Single-loop current sensor less control for single-phase boost-type SMR. IEEE Trans. Power Electron. 24, 163–171 (2009)

    Article  Google Scholar 

  12. Pahlevaninezhad, M., Das, P., Moschopoulos, G., Jain, P.: Sensor less control of a boost PFC AC/DC converter with a very fast transient response, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE. 2013. https://doi.org/10.1109/APEC.2013.6520233.

  13. Yip, S.C., Qiu, D.Y., Chung, H.S., Hui, S.Y.R.: A novel voltage sensor less control technique for a bidirectional ac/dc converter. IEEE Trans. Power Electron. 18(6), 1346–1355 (2003)

    Article  Google Scholar 

  14. Ohnishi, T., Hojo, M.: DC voltage sensorless single-phase PFC converter. IEEE Trans. Power Electron. 19, 404–410 (2004)

    Article  Google Scholar 

  15. Chen, H.-C.: Duty phase control for single-phase boost-type SMR. IEEE Trans. Power Electron. 23(4), 1927–1934 (2008). https://doi.org/10.1109/TPEL.2008.924627

    Article  Google Scholar 

  16. Nguyen, C.-L., Lee, H.-H., Chun, T.-W.: A simple grid-voltage-sensorless control scheme for PFC boost converters. J. Power Electron. 14, 712–721 (2014)

    Article  Google Scholar 

  17. López, F., López-Martín, V.M., Azcondo, F.J., Corradini, L., Pigazo, A.: Current sensor less power factor correction with predictive controllers. IEEE J. Emerg. Select. Top. Power Electron. 7, 891–900 (2019)

    Article  Google Scholar 

  18. Wang, J., Maruta, H., Matsunaga, M., Kurokawa, F.: A novel predictive digital controlled sensor less PFC converter under the boundary conduction mode. J. Power Electron. 17, 1–10 (2017)

    Article  Google Scholar 

  19. Zhang, X., et al.: Sensorless control for DC–DC boost converter via generalized parameter estimation-based observer. Appl. Sci. 11, 7761 (2021)

    Article  Google Scholar 

  20. Lee, D.-C., Lim, D.-S.: AC voltage and current sensorless control of three-phase PWM rectifiers. IEEE Trans. Power Electron. 17, 883–890 (2002)

    Article  Google Scholar 

  21. Bhowmik, S., van Zyl, A., Spee, R., Enslin, J.H.R.: Sensorless current control for active rectifiers. IEEE Trans. Ind. Appl. 33, 765–773 (1997)

    Article  Google Scholar 

  22. Chen, H.-C., Lin, C.-C., Liao, J.-Y.: Modified single-loop current sensorless control for single-phase boost-type SMR With distorted input voltage. IEEE Trans. Power Electron. 26, 1322–1328 (2011)

    Article  Google Scholar 

  23. Ohnishi, T., Fujii, K.: Line voltage sensorless three phase PWM converter by tracking control of operating frequency, in Proceedings of Power Conversion Conference—PCC’97 (IEEE). https://doi.org/10.1109/PCCON.1997.645620.

  24. Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I.: Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34, 473–479 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidumolu Vijaya Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, N.V., Praneeth, A.V.J.S., Yalla, N. et al. Simplified DC voltage sensorless control of single-phase PFC converters in EV chargers. J. Power Electron. 22, 1956–1965 (2022). https://doi.org/10.1007/s43236-022-00494-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00494-y

Keywords

Navigation