Skip to main content
Log in

Online voltage phase synchronization in receiving coils of multi-input wireless power transfer

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In multi-input wireless power transfer (WPT) systems, it is plagued to create a destructive interference between the multiple transmitters to result in a relatively low voltage delivered to the receiving coil and load, due to the phase differences of the received voltages from different transmitters. In this regard, it is essential to synchronize the phases of the received voltages of the receiving coil from different transmitters. However, the existing offline synchronization methodologies rely heavily on an analytical form solution of the received voltage in a receiver. In most engineering application scenarios, such close-form solution is almost impossible. Moreover, the close form solution, even if possible, will vary with the operating conditions and environments. To eliminate these deficiencies of existing synchronization methodologies, an online synchronization methodology is proposed for a multi-input WPT system. In the proposed methodology, the received voltages from different transmitters are determined from a series of online voltage samplings under different offset phases, and a synchronization strategy is then proposed and implemented. A multi-input WPT prototype is developed to test the feasibility of the proposed synchronization methodology. The experimental results have demonstrated that the received voltage is significantly enhanced by applying the proposed online phase synchronization methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, Z., Pang, H.L., Georgiadis, A., Cecati, C.: Wireless power transfer—an overview. IEEE Trans. Ind. Electron. 66(2), 1044–1058 (2019)

    Article  Google Scholar 

  2. Wu, J.D., Zhao, C.W., Lin, Z.Y., Du, J., Hu, Y.H., He, X.N.: Wireless power and data transfer via a common inductive link using frequency division multiplexing. IEEE Trans. Power Electron. 62(12), 7810–7820 (2015)

    Google Scholar 

  3. Covic, G.A., Boys, J.T.: Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 1(1), 28–41 (2013)

    Article  Google Scholar 

  4. Xiao, L., Ping, W., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv Tutor. 18(2), 1413–1452 (2016)

    Article  Google Scholar 

  5. Hui, S.Y.: Planar wireless charging technology for portable electronic products and qi. Proc. IEEE 101(6), 1290–1301 (2013)

    Article  Google Scholar 

  6. Taylor, J. A., Low, Z. N., Casanova, J., Lin, J.: A wireless power station for laptop computers. In: Proc. IEEE Radio Wireless Symposium, pp. 625–628 (2010)

  7. Hoang, H., Lee, S., Kim, Y., Choi, Y., Bien, F.: An adaptive technique to improve wireless power transfer for consumer electronics. IEEE Trans. Consum. Electron. 58(2), 327–332 (2012)

    Article  Google Scholar 

  8. Hui, S.Y.R., Zhong, W.X., Lee, C.K.: A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500–4511 (2014)

    Article  Google Scholar 

  9. Chen, X., Yu, S.B., Zhang, Z.: A receiver-controlled coupler for multiple output wireless power transfer applications. IEEE Trans. Circ. Syst. I Reg. Papers 66(99), 4542–4552 (2019)

    Article  Google Scholar 

  10. Bou-Balust, E., Hu, A.P., Alarcon, E.: Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models. IEEE Trans. Circuits Syst. I Reg. Papers 62(10), 2574–2583 (2015)

    Article  MathSciNet  Google Scholar 

  11. Yang, G., Moghadam, M.R.V., Zhang, R.: Magnetic MIMO signal processing and optimization for wireless power transfer. IEEE Trans. Signal Process. 65(11), 2860–2874 (2017)

    Article  MathSciNet  Google Scholar 

  12. Arnitz, D., Reynolds, M.S.: MIMO wireless power transfer for mobile devices. IEEE Pervas. Comput. 15(4), 36–44 (2016)

    Article  Google Scholar 

  13. Yoon, I.J., Hao, L.: Investigation of near-field wireless power transfer under multiple transmitters. IEEE Antennas Wirel. Propag. Lett. 10, 662–665 (2011)

    Article  Google Scholar 

  14. Huh, S., Ahn, D.: Two-transmitter wireless power transfer with optimal activation and current selection of transmitters. IEEE Trans. Power Electron. 33(6), 4957–4967 (2018)

    Article  Google Scholar 

  15. Uchida, A., Shimokawa, S., Kawano, H., Matsui, K., Ozaki, K., Taguchi, M.: Phase and intensity control of multiple coil currents in mid-range wireless power transfer. IET Microw. Antennas Propag. 8(7), 498–505 (2014)

    Article  Google Scholar 

  16. Johari, R., Krogmeier, J.V., Love, D.J.: Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. IEEE Trans. Ind. Electron. 61(4), 1774–1783 (2014)

    Article  Google Scholar 

  17. Zhong, W.X., Lee, C.K., Hui, S.: General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 261–270 (2013)

    Article  Google Scholar 

  18. Nguyen, M.Q., Chou, Y., Plesa, D., Rao, S., Chiao, J.: Multiple-inputs and multiple-outputs wireless power combining and delivering systems. IEEE Trans. Power Electron. 30(11), 6254–6263 (2015)

    Article  Google Scholar 

  19. Lee, K., Cho, D.H.: Diversity analysis of multiple transmitters in wireless power transfer system. IEEE Trans. Magn. 49(6), 2946–2952 (2013)

    Article  Google Scholar 

  20. Liu, X.Q., Mei, B.Q., Wang, X.D., Wen, Z.G.: Magnetic transceiver beamforming for a 2 × 2 magnetic resonance charging system. IEEE J. Electromagn. RF Microw. Med. Biol. 2(3), 186–192 (2018)

    Article  Google Scholar 

  21. Waters, B.H., Mahoney, B.J., Ranganathan, V., Smith, J.R.: Power delivery and leakage field control using an adaptive phased array wireless power system. IEEE Trans. Power Electron. 30(11), 6298–6309 (2015)

    Article  Google Scholar 

  22. Jiwariyavej, V., Imura, T., Hori, Y.: Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 191–200 (2014)

    Article  Google Scholar 

  23. Li, S.F., Cheng, L.L., Li, F.W.: Online parameter estimation for wireless power transmission systems using reflected impedance angle tangent. J. Power Electron. 18(1), 300–308 (2018)

    Google Scholar 

  24. Dai, X., Li, X., Li, Y., Hu, A.P.: Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans. Power Electron. 33(6), 5005–5015 (2017)

    Article  Google Scholar 

  25. Su, Y., Zhang, H., Wang, Z., Hu, A.P., Chen, L., Sun, Y.: Steady-state load identification method of inductive power transfer system based on switching capacitors. Trans. Power Electron. 30(11), 6349–6355 (2015)

    Article  Google Scholar 

  26. Arakawa, T., Goguri, S., Krogmeier, J.V., Kruger, A., Love, D.J., Mudumbai, R.: Optimizing wireless power transfer from multiple transmit coils. IEEE Access 6, 23828–23838 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyou Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, S. Online voltage phase synchronization in receiving coils of multi-input wireless power transfer. J. Power Electron. 22, 1947–1955 (2022). https://doi.org/10.1007/s43236-022-00493-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00493-z

Keywords

Navigation