Skip to main content

Advertisement

Log in

Understanding mechanisms of recharge through fractured sandstone using high-frequency water-level-response data

Compréhension des mécanismes de recharge à travers les grès fracturés en utilisant des données de niveau d’eau à haute fréquence

Conocimiento de los mecanismos de recarga a través de areniscas fracturadas mediante datos de alta frecuencia de respuesta al nivel del agua

利用高频水位响应数据了解裂缝砂岩补给机制

Entendendo os mecanismos de recarga através de arenito fraturado usando dados de resposta do nível da água de alta frequência

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

High-frequency time series analysis and cross-correlation identified the relationship between precipitation and water-level responses at 16 sandstone wells in southern California, USA. The time series analysis suggested that the water table rises only when a threshold value of precipitation is reached during the rainy season that likely represents the water content deficit from the previous 7-month dry season being replenished before generating a water-table response. The cross-correlation indicates two statistically significant lag-times: 0–3 and 20–50 days. Confidence in these results was augmented by unprecedented and exceptionally high-resolution sampling frequency. Water pressure readings were collected every second and then analyzed to identify and remove the effects of barometric pressure changes, Earth tides and earthquakes on water levels. These effects are usually considered “noise” in recharge studies, but their accurate quantification helped assess the unconfined nature of the wells, minimize uncertainties of the results, and isolate the groundwater responses to precipitation. Diffusivity values for the thick unsaturated zone, based on the time lags, suggest quick responses are related to flow through fractures and longer time lags are associated with piston-type movement in the matrix. Fast responses were more likely for shallow water tables in response to high-intensity precipitation events and vice versa. These findings are consistent with those found, using lower resolution data, for the Chalk aquifer in England (UK), despite the contrasting fracture and matrix properties, hydrogeological setting and climatic conditions. Thus, the same style of response to precipitation is expected globally where similar fractured porous media are present.

Résumé

L’analyse de séries chronologiques à haute fréquence et la corrélation croisée ont permis d’identifier la relation entre les précipitations et les niveaux d’eau dans 16 puits interceptant des grès dans le sud de la Californie, Etats-Unis d’Amérique. L’analyse des séries chronologiques a suggéré que la nappe phréatique ne monte que lorsqu’une valeur seuil de précipitations est atteinte au cours de la saison des pluies, correspondant probablement à la reconstitution du déficit en teneur en eau de la saison sèche précédente d’une durée de 7 mois avant de générer une réponse de la nappe phréatique. La corrélation croisée indique deux temps de latence statistiquement significatifs : 0–3 et 20–50 jours. La confiance dans ces résultats a été renforcée par une fréquence d’échantillonnage sans précédent et exceptionnellement à haute résolution. Les relevés de pression de l’eau ont été recueillis toutes les secondes, puis analysés pour identifier et supprimer les effets des changements de pressions barométriques, des marées terrestres et des tremblements de terres sur les niveaux d’eau. Ces effets sont généralement considérés comme du “bruit” dans les études relatives à la recharge, mais leur quantification précise a permis d’évaluer le caractère non captif des puits, de minimiser les incertitudes des résultats et de dissocier les réponses des eaux souterraines aux précipitations. Les valeurs de diffusivité pour la zone épaisse non saturée, basées sur les décalages temporels, suggèrent que des réponses rapides sont liées à l’écoulement à travers les fractures et que des décalages temporels plus longs sont associés à un mouvement de type piston dans la matrice. Des réponses rapides étaient plus probables pour les nappes phréatiques peu profondes en réponse à des événements de précipitations de haute intensité et vice versa. Ces résultats sont cohérents avec ceux trouvés, en utilisant des données à plus faible résolution, pour l’aquifère de craie en Angleterre (Royaume-Uni), malgré les propriétés contrastées des fractures et de la matrice, le contexte hydrogéologique et les conditions climatiques. Ainsi, on peut s’attendre à retrouver le même style de réponse aux précipitations de par le monde, là où des milieux poreux fracturés similaires sont présents.

Resumen

El análisis de series temporales de alta frecuencia y la correlación cruzada identificaron la relación entre la precipitación y las respuestas del nivel del agua en 16 pozos en arenisca en el sur de California, Estados Unidos. El análisis de las series temporales sugirió que el nivel freático se eleva sólo cuando se alcanza un valor umbral de precipitación durante la estación de lluvias que probablemente representa el déficit de contenido de agua de la estación seca anterior de 7 meses que se repone antes de generar una respuesta del nivel freático. La correlación cruzada indica dos tiempos de retraso estadísticamente significativos: 0–3 y 20–50 días. La confianza en estos resultados se vio aumentada por una frecuencia de muestreo sin precedentes y de alta resolución. Las lecturas de la presión del agua se recogieron cada segundo y luego se analizaron para identificar y eliminar los efectos de los cambios de presión barométrica, las mareas terrestres y los terremotos en los niveles de agua. Estos efectos suelen considerarse “ruido” en los estudios de recarga, pero su cuantificación precisa ayudó a evaluar la naturaleza no confinada de los pozos, a minimizar las incertidumbres de los resultados y a aislar las respuestas de las aguas subterráneas a las precipitaciones. Los valores de difusividad para la zona no saturada de gran espesor, basados en los desfases temporales, sugieren que las respuestas rápidas están relacionadas con el flujo a través de las fracturas y los desfases temporales más largos están asociados con el movimiento de tipo pistón en la matriz. Las respuestas rápidas fueron más probables para las capas freáticas poco profundas en respuesta a eventos de precipitación de alta intensidad y viceversa. Estos resultados son coherentes con los encontrados, utilizando datos de menor resolución, para el acuífero Chalk en Inglaterra (Reino Unido), a pesar de las propiedades contrastadas de la fractura y la matriz, el entorno hidrogeológico y las condiciones climáticas. Por lo tanto, se espera el mismo estilo de respuesta a las precipitaciones en forma global, donde existen medios porosos fracturados similares.

摘要

高频时间序列分析和互相关性确定了美国南加州 16 口砂岩井的降水与水位响应之间的关系。时间序列分析表明, 只有在雨季达到降水阈值时, 地下水位才会上升, 这可能表示着前7 个月旱季的含水量亏缺在地下水位响应之前得到补充。互相关表明两个具有统计学意义的滞后时间:0–3 天和 20–50 天。史无前例的高分辨率采样频率提高了对这些结果的置信度。每秒收集一次水压读数, 然后对其进行分析, 以识别和消除气压变化、地球潮汐和地震对水位的影响。这些影响在补给研究中通常被认为是“噪音”, 但它们的准确量化有助于评估井的承压性质, 最大限度地减少结果的不确定性, 并去除地下水对降水的响应。基于时间滞后的厚非饱和带的扩散率值表明, 快速响应与通过裂缝的流动有关, 而较长的时间滞后与基质中的活塞式运动有关。响应高强度降水事件的浅层潜水位更有可能快速响应, 反之亦然。尽管裂缝和基质特性、水文地质环境和气候条件存在差异,这些发现与使用较低分辨率数据发现的英格兰(英国)白垩纪含水层的结果一致。因此对于具有类似的裂缝多孔介质条件, 降水对地下水的相同响应类型具有全球性。

Resumo

A análise de séries temporais de alta frequência e a correlação cruzada identificaram a relação entre a precipitação e as respostas do nível da água em 16 poços de arenito no sul da Califórnia, EUA. A análise da séries temporais sugeriu que o lençol freático aumenta apenas quando um valor limite de precipitação é atingido durante a estação chuvosa que provavelmente representa o déficit de conteúdo de água da estação seca anterior de 7 meses sendo reabastecido antes de gerar uma resposta do lençol freático. A correlação cruzada indica dois tempos de atraso estatisticamente significativos: 0–3 e 20–50 dias. A confiança nesses resultados foi aumentada pela frequência de amostragem sem precedentes e excepcionalmente de alta resolução. As leituras da pressão da água foram coletadas a cada segundo e depois analisadas para identificar e remover os efeitos das mudanças na pressão barométrica, marés terrestres e terremotos nos níveis da água. Esses efeitos são geralmente considerados “ruído” em estudos de recarga, mas sua quantificação precisa ajudou a avaliar a natureza não confinada dos poços, minimizar incertezas dos resultados e isolar as respostas das águas subterrâneas à precipitação. Os valores de difusividade para a zona não saturada espessa, com base nas defasagens de tempo, sugerem que respostas rápidas estão relacionadas a fraturas de fluxo e defasagens de tempo mais longas estão associadas a movimentos do tipo pistão na matriz. Respostas rápidas foram mais prováveis ​​para lençóis freáticos rasos em resposta a eventos de precipitação de alta intensidade e vice-versa. Esses achados são consistentes com os encontrados, usando dados de baixa resolução, para o aquífero Chalk na Inglaterra (Reino Unido), apesar das propriedades contrastantes de fratura e matriz, configuração hidrogeológica e condições climáticas. Assim, o mesmo estilo de resposta à precipitação é esperado globalmente onde meios porosos fraturados semelhantes estão presentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allocca V, De Vita P, Manna F, Nimmo JR (2015) Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy. J Hydrol 529:843–853. https://doi.org/10.1016/j.jhydrol.2015.08.032

    Article  Google Scholar 

  • Amirtharaj ES (2003) Statistical synthesis of image analysis and mercury porosimetry for multiscale pore structure characterization. MSc Thesis, University of Waterloo, Waterloo, ON

  • Amirtharaj ES, Ioannidis MA, Parker B, Tsakiroglou CD (2011) Statistical synthesis of imaging and porosimetry data for the characterization of microstructure and transport properties of sandstones. Transp Porous Media 86:135–154. https://doi.org/10.1007/s11242-010-9612-x

    Article  Google Scholar 

  • Brouyère S (2006) Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk. J Contam Hydrol 82:195–219

    Article  Google Scholar 

  • Butler JJ, Jin W, Mohammed GA, Reboulet EC (2011) New insights from well responses to fluctuations in barometric pressure. Groundwater 49:525–533. https://doi.org/10.1111/j.1745-6584.2010.00768.x

    Article  Google Scholar 

  • Cey E, Rudolph D, Therrien R (2006) Simulation of groundwater recharge dynamics in partially saturated fractured soils incorporating spatially variable fracture apertures. Water Resour Res 42:W09413. https://doi.org/10.1029/2005WR004589

  • Cherry JA, McWorther DB, Parker BL (2009) Site conceptual model for the migration and fate of contaminants in groundwater at the Santa Susana Field Laboratory, Simi, California (draft), vol 1–4. Association with the University of Guelph, Toronto

    Google Scholar 

  • Cilona A, Aydin A, Johnson NM (2015) Permeability of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution in the Chatsworth Formation, California, USA. Hydrogeol J 23:405–419

    Article  Google Scholar 

  • Cilona A, Aydin A, Likerman J, Parker BL, Cherry JA (2016) Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport. J Struct Geol 85:95–114

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner MF, Allen MR, Andrews T, Beyerle U, Bitz CM, Bony S, Booth BBB (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: the physical science basis: contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 1029–1136

  • Condon LE, Atchley AL, Maxwell RM (2020) Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat Commun 11:873. https://doi.org/10.1038/s41467-020-14688-0

    Article  Google Scholar 

  • Corona CR, Gurdak JJ, Dickinson JE, Ferre TPA, Maurer EP (2018) Climate variability and vadose zone controls on damping of transient recharge. J Hydrol 561:1094–1104

    Article  Google Scholar 

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:W01008. https://doi.org/10.1029/2004WR003077

  • Crosbie RS, Doble RC, Turnadge C, Taylor AR (2019) Constraining the magnitude and uncertainty of specific yield for use in the water table fluctuation method of estimating recharge. Water Resour Res 55:7343–7361

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, Chichester, UK

  • Demond AH, Lindner AS (1993) Estimation of interfacial tension between organic liquids and water. Environ Sci Technol 27:2318–2331. https://doi.org/10.1021/es00048a004

    Article  Google Scholar 

  • Dickinson JE, Ferré TPA (2018a) Filtering of period infiltration in a layered vadose zone: 1. approximation of damping and time lags. Vadose Zone J 17:1–16

    Google Scholar 

  • Dickinson JE, Ferré TPA (2018b) Filtering of periodic infiltration in a layered vadose zone: 2. applications and a freeware screening tool. Vadose Zone J 17:1–12

    Google Scholar 

  • Diggle PJ (1990) Time series: a biostatistical introduction. Clarendon, Oxford

    Google Scholar 

  • Evans K, Beavan J, Simpson D, Mousa S (1991) Estimating aquifer parameters from analysis of forced fluctuations in well level: an example from the Nubian Formation near Aswan, Egypt—3, diffusivity estimates for saturated and unsaturated zones. J Geophys Res: Solid Earth. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JB00957. Accessed 20 Jan 2021

  • Fan Y (2015) Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour Res 51:3052–3069. https://doi.org/10.1002/2015WR017037

    Article  Google Scholar 

  • Foster SS (1975) The Chalk groundwater tritium anomaly: a possible explanation. J Hydrol 25:159–165

    Article  Google Scholar 

  • Frontier Economics (2016) Economic output of groundwater dependent sectors in the Great Artesian Basin. Frontier Economics, Melbourne, Australia

  • Gasparrini A, Armstrong B, Kenward MG (2010) Distributed lag non-linear models. Stat Med 29:2224–2234. https://doi.org/10.1002/sim.3940

    Article  Google Scholar 

  • Hartmann T, Wenzel H-G (1995) The HW95 tidal potential catalogue. Geophys Res Lett 22:3553–3556. https://doi.org/10.1029/95GL03324

    Article  Google Scholar 

  • Headworth HG (1972) The analysis of natural groundwater level fluctuations in the Chalk of Hampshire (on the Hampshire Downs). J Institution Water Eng 26(2):107–124

    Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Hurley JC (2003) Rock core investigation of DNAPL penetration and persistence in fractured sandstone. MSc Thesis, University of Waterloo, Waterloo, ON, Canada

  • Ireson AM, Butler AP (2011) Controls on preferential recharge to Chalk aquifers. J Hydrol 398:109–123

    Article  Google Scholar 

  • Ireson AM, Mathias SA, Wheater HS, Butler AP, Finch J (2009) A model for flow in the chalk unsaturated zone incorporating progressive weathering. J Hydrol 365:244–260

    Article  Google Scholar 

  • Keller AA, Chen M (2003) Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids. Water Resour Res 39. https://doi.org/10.1029/2003WR002071

  • Kennel J (2020) High frequency water level responses to natural signals. University of Guelph. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/17890. Accessed July 2022

  • Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44. https://doi.org/10.1029/2007WR006004

  • Lee LJE, Lawrence DSL, Price M (2006) Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England. J Hydrol 330:604–620

    Article  Google Scholar 

  • Link MH, Squires RL, Colburn IP (1984) Slope and deep-sea fan facies and paleogeography of Upper Cretaceous Chatsworth Formation, Simi Hills, California. AAPG Bull 68:850–873

    Google Scholar 

  • Maclean RD (1969) The effects of tipped domestic refuse on groundwater quality: a survey in north Kent. Proc. Soc. Wat. Treat. Exam. 18:18–34

  • Manna F, Cherry JA, McWhorter DB, Parker BL (2016) Groundwater recharge assessment in an upland sandstone aquifer of southern California. J Hydrol 541:787–799. https://doi.org/10.1016/j.jhydrol.2016.07.039

    Article  Google Scholar 

  • Manna F, Walton KM, Cherry JA, Parker BL (2017) Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region. J Hydrol 555:869–880. https://doi.org/10.1016/j.jhydrol.2017.10.060

    Article  Google Scholar 

  • Manna F, Murray S, Abbey D, Martin P, Cherry JA, Parker BL (2019a) Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region. Hydrol Earth Syst Sci 23:2187–2205. https://doi.org/10.5194/hess-23-2187-2019

    Article  Google Scholar 

  • Manna F, Walton KM, Cherry JA, Parker BL (2019b) Five-century record of climate and groundwater recharge variability in southern California. Sci Rep 9. https://doi.org/10.1038/s41598-019-54560-w

  • Mathias SA, Butler AP, Jackson BM, Wheater HS (2006) Transient simulations of flow and transport in the Chalk unsaturated zone. J Hydrol 330:10–28

    Article  Google Scholar 

  • Maxwell RM, Chow FK, Kollet SJ (2007) The groundwater–land-surfaces–atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv Water Resour 30:2447–2466. https://doi.org/10.1016/j.advwatres.2007.05.018

    Article  Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Singha K, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56:27–44

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507

    Article  Google Scholar 

  • Murray-Darling Basin Commission (Australia), Murray-Darling Basin Commission (Australia) (1999) Murray-Darling Basin groundwater: a resource for the future. The Commission, Canberra

    Google Scholar 

  • Nativ R, Adar E, Dahan O, Geyh M (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31:253–261

    Article  Google Scholar 

  • Nimmo JR, Horowitz C, Mitchell L (2015) Discrete-storm water-table fluctuation method to estimate episodic recharge. Groundwater 53:282–292

    Article  Google Scholar 

  • Parker BL, Cherry JA, Chapman SW (2012) Discrete fracture network approach for studying contamination in fractured rock. AQUA mundi 3:101–116

    Google Scholar 

  • Pehme PE, Greenhouse JP, Parker BL (2007) The active line source temperature logging technique and its application in fractured rock hydrogeology. J Environ Eng Geophys 12:307–322

    Article  Google Scholar 

  • Pehme P, Parker BL, Cherry JA, Blohm D (2014) Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock. J Hydrol 513:101–114

    Article  Google Scholar 

  • Peterson SM, Traylor JP, Guira M (2020) Groundwater availability of the Northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming. US Geological Survey, Reston, VA

  • Pierce AA, Chapman SW, Zimmerman LK, Hurley JC, Aravena R, Cherry JA, Parker BL (2018a) DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. J Contam Hydrol 212:96–114

    Article  Google Scholar 

  • Pierce AA, Parker BL, Ingleton R, Cherry JA (2018b) Novel well completions in small diameter coreholes created using portable rock drills. Groundwater Monitor Remedi 38:42–55

    Article  Google Scholar 

  • Price M, Low RG, McCann C (2000) Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer. J Hydrol 233:54–71

    Article  Google Scholar 

  • Quinn P, Cherry JA, Parker BL (2015) Combined use of straddle packer testing and FLUTe profiling for hydraulic testing in fractured rock boreholes. J Hydrol 524:439–454

    Article  Google Scholar 

  • Quinn P, Parker BL, Cherry JA (2016a) Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes. Hydrogeol J 24:59–77

    Article  Google Scholar 

  • Quinn PM, Cherry JA, Parker BL (2016b) Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests. J Hydrol 542:756–771. https://doi.org/10.1016/j.jhydrol.2016.09.046

    Article  Google Scholar 

  • Rasmussen TC, Mote TL (2007) Monitoring surface and subsurface water storage using confined aquifer water levels at the Savannah River Site, USA. Vadose Zone J 6:327–335. https://doi.org/10.2136/vzj2006.0049

    Article  Google Scholar 

  • Rasmussen TC, Baldwin RH, Dowd JF, Williams AG (2000) Tracer vs. pressure wave velocities through unsaturated saprolite. Soil Sci Soc Am J 64:75–85. https://doi.org/10.2136/sssaj2000.64175x

    Article  Google Scholar 

  • Salem O, Pallas P (2004) The Nubian Sandstone Aquifer System (NSAS). In: Managing shared aquifer resources in Africa, Tripoli, June 2002

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds MW, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Processes 20:3335–3370

    Article  Google Scholar 

  • Smith DB, Wearn PL, Richards HJ, Rowe PC (1970) Water movement in the unsaturated zone of high and low permeability strata by measuring natural tritium. Isotope Hydrology 1970 Proceedings of a Symposium on Use of Isotopes in Hydrology, Vienna, March 1970

  • Spane FA (2002) Considering barometric pressure in groundwater flow investigations: barometric pressure in groundwater flow investigations. Water Resour Res 38:14-1–14-18. https://doi.org/10.1029/2001WR000701

    Article  Google Scholar 

  • Sterling SN, Parker BL, Cherry JA, Williams JH, Lane JW Jr, Haeni FP (2005) Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone. Groundwater 43:557–573

    Article  Google Scholar 

  • Stevanović Z (2019) Karst waters in potable water supply: a global scale overview. Environ Earth Sci 78:662. https://doi.org/10.1007/s12665-019-8670-9

    Article  Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Hussain S (2003) Recharge processes: piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeol J 11:387–395

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P et al (2013) Ground water and climate change. Nat Clim Chang 3:322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Wang JSY, Narasimhan TN (1985) Hydrologic mechanisms governing fluid flow in a partially saturated, fractured, porous medium. Water Resour Res 21:1861–1874

    Article  Google Scholar 

  • Williams JH, Lane Jr JW, Singha K, Haeni FP (1999) Application of advanced geophysical logging in a fractured sedimentary bedrock aquifier. US Geol Surv Water Resour Invest Rep 2000-4083

  • Wu H, Jayne RS, Pollyea RM (2018) A parametric analysis of capillary pressure effects during geologic carbon sequestration in a sandstone reservoir. Greenhouse Gases: Sci Technol 8:1039–1052

    Article  Google Scholar 

Download references

Acknowledgements

Field work was performed by Ryan Kroeker, from the Morwick G360 Groundwater Research Institute.

Funding

Funding for this work was provided by an NSERC Industrial Research Chair (no. IRCPJ 363783) to Beth Parker in partnership with the Boeing Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Manna.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, F., Kennel, J. & Parker, B.L. Understanding mechanisms of recharge through fractured sandstone using high-frequency water-level-response data. Hydrogeol J 30, 1599–1618 (2022). https://doi.org/10.1007/s10040-022-02515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02515-3

Keywords

Navigation