Skip to main content
Log in

Underwater trash detection algorithm based on improved YOLOv5s

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweight network MobileNetv3; the Convolutional Block Attention Module (CBAM) is embedded in the network to improve the feature extraction ability of the network in two dimensions of space and channel. At the same time, the improved network is pruned to reduce the redundant parameters and further compress the model. The experimental results show that the detection accuracy of the approach can reach 97.5% based on one-ninth of the parameters of YOLOv5s, and the real-time detection speed on the CPU is 2.5 times that of YOLOv5s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akib, A., Tasnim, F., Biswas, D., et al.: Unmanned floating waste collecting robot. In: 2019 IEEE region 10 conference (TENCON), pp. 2645–2650. IEEE (2020)

  2. Bochkovskiy A., Wang C.Y., Liao H.: YOLOv4: optimal speed and accuracy of object detection (2020). arXiv:2004.10934

  3. Fang, P., Zheng, M., Fei, L.A., et al.: S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images. Expert Syst. Appl. 182, 1–13 (2021)

    Google Scholar 

  4. Fulton, M., Hong, J., Islam, M.J., et al.: Robotic detection of marine litter using deep visual detection models. In: 2019 international conference on robotics and automation (ICRA), pp. 5752–5758 (2019)

  5. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp. 580–587. IEEE (2014)

  6. Han, K., Wang, Y., Tian Q., et al.: GhostNet: more features from cheap operations (2019). arXiv:1911.11907

  7. Hong J, Fulton M, Sattar J.: A generative approach towards improved robotic detection of marine litter. In: 2020 IEEE international conference on robotics and automation (ICRA), pp. 10525–10531. IEEE (2020)

  8. Howard, A., Sandler, M., Chen, B., et al.: Searching for MobileNetV3. In: 2019 IEEE/cvf international conference on computer vision (ICCV), pp. 1–11. IEEE (2019)

  9. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNet: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1608.08710

  10. Hu, J., Shen, L., Albanie, S., et al.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  11. Huang, S., Huang, M., Zhang, Y., et al.: Under water object detection based on concolution neural network. In: 16th international conference on web information systems and applications conference, pp. 47–58 (2019)

  12. Ju, M.R., Luo, H.B., Liu, G.Q., et al.: Infrared dim small target detection network based on spatial attention mechanism. Opt. Precis. Eng. 29(4), 1–11 (2021)

    Article  Google Scholar 

  13. Lei, J., Gao, X., Song, J., et al.: A review of deep network model compression. J. Softw. 29(2), 251–266 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Li, H., Kadav, A., Durdanovic, I., et al.: Pruning Filters for Efficient ConvNets (2016). arXiv:1608.08710

  15. Lian, J., Yin, Y., Li, L., et al.: Small object detection in traffic scenes based on attention feature fusion. Sensors 21(9), 3031 (2021)

    Article  Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: IEEE transactions on pattern analysis and machine intelligence, pp. 2980–2988. IEEE (2018)

  17. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: single shot multibox detector. In: 14th European conference on computer vision (ECCV), pp. 21–37 (2016)

  18. Madricardo, F., Ghezzo, M., Nesto, N., et al.: How to deal with seafloor marine litter: an overview of the state-of-the-art and future perspectives. Front. Mar. Sci. 7, 1–16 (2020)

    Article  Google Scholar 

  19. Mesfer, A.D., Haya, M.A., Fahd, N., et al.: Intelligent deep learning based automated fish detection model for UWSN. Comput. Mater. Continua 70(3), 5871–5887 (2021)

    Google Scholar 

  20. Mukherjee S., Valenzise G., Cheng I..: Potential of deep features for opinion-unaware, distortion-unaware, no-reference image quality assessment. In: Lecture notes in computer science, pp. 87–95. Springer (2020)

  21. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp. 779–788. IEEE (2016)

  22. Ruangpayoongsak, N., Sumroengrit, J., Leanglum, M .: A floating waste scooper robot on water surface. In:2017 17th international conference on control, automation and systems (ICCAS), pp. 1543–1548. IEEE (2017)

  23. Sandler, M., Howard, A., Zhu, M., et al.: mobilenetv2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp. 4510–4520. IEEE (2018)

  24. Senouci, B., Charfi, I., Heyrman, B., et al.: Fast prototyping of a SoC-based smart-camera: a real-time fall detection case study. J. Real-Time Image Proc. 12(4), 649–662 (2016)

    Article  Google Scholar 

  25. Shi, P.F., Xu, X.W., Ni, J.J., et al.: Underwater biological detection algorithm based on improved faster-RCNN. Water 13(17), 2420 (2021)

    Article  Google Scholar 

  26. Tajar, A.T., Ramazani, A., Mansoorizadeh, M.: A lightweight Tiny-YOLOv3 vehicle detection approach. J. Real-Time Image Proc. 18(6), 2389–2401 (2021)

    Article  Google Scholar 

  27. Woo, S., Park, J., Lee, J.Y., et al.: CBAM: convolutional block attention module. In: 15th European conference on computer science (ECCV), pp. 3–19 (2018)

  28. Yang, K.J., Yang, J.X., Chen, B.S., et al.: Methods of defect detection in transmission line based on depthwise separable convolution and SVD. Smart Power 48(10), 64–69 (2020)

    Google Scholar 

  29. Yang, Y.M., Liao, Y.R., Lin, C.B., et al.: A review of target detection algorithms for lightweight convolutional neural networks. Ship Electron. Eng. 41(4), 31–36 (2021)

    Google Scholar 

  30. Zhang Q., Jiang Z., Lu Q., et al.: Split to be slim: an overlooked redundancy in vanilla convolution (2020). arXiv:2006.12085

  31. Zheng, Z., Wang, P., Liu, W., et al.: Distance-IoU Loss: faster and better learning for bounding box regression (2020). https://doi.org/10.1609/aaai.v34i07.6999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiQian Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Sun, Y., Wang, T. et al. Underwater trash detection algorithm based on improved YOLOv5s. J Real-Time Image Proc 19, 911–920 (2022). https://doi.org/10.1007/s11554-022-01232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01232-0

Keywords

Navigation