Skip to main content
Log in

Study of the Dynamic Recrystallization Process of 347H Stainless Steel at High Strain Rate

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The true stress–strain curves and constitutive equations of 347H austenitic stainless steel were obtained via high temperature compression tests with the temperature range of 850 °C-1250 °C and the strain rate range of 0.01 s−1–10 s−1. We have studied the microstructure evolution and nucleation mechanism of dynamic recrystallization by the electron backscatter distribution technique (EBSD), and the results show that the process of dynamic recrystallization consists of nucleation and growth. At high strain rate (10 s−1) and low temperature (< 1150 °C), the grain size increases with the increase of temperature, while the deformed grain gradually transform to recrystallized grain. When the temperature reaches 1150 °C, the complete dynamic recrystallization occurs and the volume fraction of recrystallized grains reaches the maximum. In addition, the necklace structure has confirmed the existence of discontinuous dynamic recrystallization, while the transition from low-angle grain boundaries to high-angle grain boundaries has confirmed the existence of continuous dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rao Sixian, Peng Hui, Zhou Yu, Pan Ziwei. Mechanical Engineering 51 (2015) 3535.

  2. de Oliveira MP, Zhang W, Yu HY, Bao HS, Xie XS. Energy Materials (2014) 271.

  3. Lin, YC, Chen, XM. Materials & Design. 32(2011) 1733. https://doi.org/10.1080/10426910902746895.

  4. Mandal, S, Jayalakshmi, M, Bhaduri, AK. Materials Science. 45(2014) 5645. https://doi.org/10.1007/s11661-014-2480-1

  5. Puli, R, Ram, GDJ. Materials Characterization. 74 (2012) 49. https://doi.org/10.1016/j.matchar.2012.09.001

  6. Dehghan-Manshadi, A, Beladi, H, Barnett, MR, Hodgson, PD. Deakin University. 467–470(2004) 1163. https://doi.org/10.4028/www.scientific.net/MSF.467-470.1163

  7. Luo, R, Chen, LL, Zhang, YX, Cao, Y, Peng, CT. Journal of Alloys and Compounds. 865 (2021). https://doi.org/10.1016/j.jallcom.2021.158601

  8. Zhong, Xt, Huang, LK, Liu, F. Journal of Materials Engineering and Performance. 29(2020) 6155. https://doi.org/10.1007/s11665-020-05093-1

  9. Wang, MJ, Sun, CY, Fu, MW, Liu, ZL, Qian, LY. Journal of Alloys and Compounds. 820 (2020) 153325. https://doi.org/10.1016/j.jallcom.2019.153325

  10. Azarbarmas, M, Aghaie-Khafri, M, Cabrera, JM, Calvo, J. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. 678 (2016) 137. https://doi.org/10.1016/j.msea.2016.09.100

  11. Zhang, JJ, Yi, YP, Huang, SQ, Mao, XC. Nanoscience & Nanotechnology. 804 (2021)140650. https://doi.org/10.1016/j.msea.2020.140650

  12. Chen Xiaoxia, Tang Weineng, Chen Rongshi. Chinese Journal of Rare Metals. 01 (2012). 0258–7076(2012)36:1<6:CJM31H>2.0.TX;2-#

  13. Wu Jieqiong, Chen Ke, Chen Xingfang, Tian Sheng, Shen Zhi, Zhang Lanting. Journal of Chinese Electronic Microscopy Society. 30 (2011)356. 1000–6281(2011)30:4/5<356:EZN8DT>2.0.TX;2-J

  14. Wang, L, Wang, SA, Liu, Y , Zhao, GP. Materials Science Forum. 638–642 (2010) 2357.

  15. Cheng Xiaonong, Gui Xiang, Luo Rui, Xu Guifang, Yuan Zhizhong. Chinese Journal of Materials Research. 34(2020) 611. 1005–3093(2020)34:8<611:XXASTN>2.0.TX;2-#

  16. Sun Yu, Zhou Chen, Wan Zhipeng, Ren Lili, Hu Lianxi. Materials Review. 31(2017)12. 1005–023X(2017)31:7A<12:JSCLDT>2.0.TX;2-Y

  17. Liu Y M. Physics Examination & Testing. 32(2014) 29. https://doi.org/10.13228/j.boyuan.issn1001-0777.20130020

  18. Tikhonova, M, Kaibyshev, R, Belyakov, A. Advanced Engineering Materials. 20(2018) 1700960. https://doi.org/10.1002/adem.201700960.

  19. JQ Xiong, G Xie, GB Tang. Yunnan Metallurgy. 37(2008) 37.

  20. Han, Y, Wu, H, Zhang, W, Zou, DN, Liu, GW. Materials & Design. 69 (2015) 230. https://doi.org/10.1016/j.matdes.2014.12.049.

  21. Günter Gottstein. Physical Foundations of Materials Science. Springer, Berlin, Heidelberg. (2004)

  22. Callister W D. Fundamentals of materials science and engineering. John Wiley and Sons Ltd, 2000.

  23. Li, DF, Guo, QM, Guo, SL, Peng, HJ, Wu, ZG. Materials & Design. 32(2011) 696. https://doi.org/10.1016/j.matdes.2010.07.040.

  24. Momeni, A, Kazemi, S, Ebrahimi, G, Maldar, A. International Journal of Minerals Metallurgy and Materials. 21 (2014) 36.

  25. Shore, FM, Morakabati, M, Abbasi, SM, Momeni, A. Journal of Materials Engineering and Performance. 23 (2014) 1424. https://doi.org/10.1007/s11665-014-0863-5.

  26. Sun shuli, He wenwu, Zhang mingang. Journal of Plasticity Engineering. 18(06) (2011) 64–69. https://doi.org/10.3969/j.issn.1007-2012.2011.06.011

  27. Ma Jing, Liu Jiansheng, Guo Zhen. Journal of Henan University of Science and Technology Natural Science. 43(3) ( 2022) 1–8. https://doi.org/10.15926/j.cnki.issn1672-6871.2022.03.001

  28. Wu, YS, Liu, Z, Qin, XZ, Wang, CS. Journal of Alloys and Compounds. 795:(2019 )370. https://doi.org/10.1016/j.jallcom.2019.05.022.

  29. Huang, K, Loge, RE. Materials & Design. 111 (2016) 548. https://doi.org/10.1016/j.matdes.2016.09.012

Download references

Acknowledgements

Authors acknowledge the financial support from City Key Research and Development Plan of Jiayuguan (20-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchen Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, R., Liu, T. et al. Study of the Dynamic Recrystallization Process of 347H Stainless Steel at High Strain Rate. Trans Indian Inst Met 75, 2913–2921 (2022). https://doi.org/10.1007/s12666-022-02664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02664-9

Keywords

Navigation