Skip to main content
Log in

Finite Element Modeling of Surface Acoustic Wave Devices Using COMSOL

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The results of the research and analysis of wave acoustic processes in piezoelectric substrates based on the solution of wave equations of piezoacoustics by the finite element method are presented. A description of the test structures and the algorithm of the work in the COMSOL Multiphysics environment are given. Three main approaches are considered: in the region of eigenfrequencies, in the given frequency range, and in the time domain. The properties and parameters of widely used surface acoustic waves are analyzed. The visualization of a number of characteristics is presented. The phase velocity of the wave and the electromechanical coupling coefficient are calculated. It is shown that the data obtained as a result of numerical analysis correspond to the data from known sources. The results of the calculation and experimental measurements of the transmission coefficient are compared using the example of a delay line and a resonator filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Grigor’ev, D.M., Godovitsyn, I.V., Amelichev, V.V., and Generalov, S.S., Finite element simulation of frequency response of MEMS-microphone, Russ. Microelectron., 2018, vol. 47, no. 3, pp. 211–216.

    Article  Google Scholar 

  2. Korotkov, A.S., Loboda, V.V., Makarov, S.B., and Fel’dkhoff, A., Modeling thermoelectric generators using the ANSYS software platform: Methodology, practical applications, and prospects, Russ. Microelectron., 2017, vol. 46, no. 2, pp. 131–138.

    Article  Google Scholar 

  3. Lagosh, A.V., Broyko, A.P., Kalyonov, V.E., Khmelnitskiy, I.K., and Luchinin, V.V., Modeling of IPMC actuator, in Proceedings of the 2017 IEEE Conference of Russian Young Researches in Electrical and Engineering (ElConRus), 2017, pp. 916–918.

  4. Sveshnikov, B., Koigerov, A., and Yankin, S., Unveiling the polarization of the multimode acoustic fields, Ultrasonics, 2018, vol. 82, pp. 209–216.

    Article  Google Scholar 

  5. Koigerov, A.S. and Balysheva, O.L., Numerical analysis of parameters of pseudosurface acoustic waves in lithium niobate and tantalate crystals, J. Commun. Technol. Electron., 2021, vol. 66, no. 12, pp. 1388–1395.

    Article  Google Scholar 

  6. Reut, V.R., Koigerov, A.S., Andreichev, S.S., Dorokhov, S.P., and Salov, A.S., The new design of SAW ID tags on base of multistrip coupler, Nano- Mikrosist. Tekh., 2019, vol. 21, no. 10, pp. 579–593.

    Google Scholar 

  7. Koigerov, A.S., Ladder type of leaky surface acoustic waves filters on substrate of lithium niobate, Nano- Mikrosist. Tekh., 2021, vol. 23, no. 3, pp. 139–147.

    Google Scholar 

  8. Aristarkhov, G.M., Gulyaev, Yu.V., Dmitriev, V.F., et al., Fil’tratsiya i spektral’nyi analiz radiosignalov. Algoritmy. Struktury. Ustroistva (Filtering and Spectral Analysis of Radio Signals. Algorithms. Structures. Devices), Moscow: Radiotekhnika, 2020.

  9. Viktorov, I.A., Zvukovye poverkhnostnye volny v tverdykh telakh (Sound Surface Waves in Solids), Moscow: Nauka, 1981.

  10. Dieulesaint, E. and Royer, D., Elastic Waves in Solids: Applications to Signal Processing, New York: Wiley, 1980.

    MATH  Google Scholar 

  11. Kannan, T., Finite element analysis of surface acoustic wave resonators, Master Thesis, Saskatoon, Canada: Univ. of Saskatchewan, 2006.

  12. Tikka, A., Al-Sarawi, S., and Abbott, D., Acoustic wave parameter extraction with application to delay line modelling using finite element analysis, Sens. Transduc. J., 2008, vol. 95, no. 8, pp. 26–39.

    Google Scholar 

  13. Ke, H., Shan, Q., and Qin, P., SAW resonator with grooves for high temperature sensing application, in Proceedings of the 2019 IEEE International Ultrasonics Symposium IUS, 2019, pp. 2549–2552.

  14. Zhang, Y., Jin, J., Li, H., et al., A novel method to extract COM parameters for SAW based on FEM, in Proceedings of the 2019 13th Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2019, pp. 1–5.

  15. Osetrov, A.V. and Nguen, V.Sh., Calculation of the parameters of surface acoustic waves in piezoelectrics using the finite element method, Vychisl. Mekh. Splosh. Sred, 2011, vol. 4, no. 4, pp. 71–80.

    Google Scholar 

  16. Dmitriev, V.F., The theory of coupled waves as a universal method for designing devices operating on surface acoustic waves, Tech. Phys., 2004, vol. 49, no. 10, pp. 1339–1348.

    Article  Google Scholar 

  17. Balysheva, O.L. et al., Akustoelektronnye ustroistva obrabotki i generatsii signalov. Printsipy raboty, rascheta i proektirovaniya printsipy raboty, rascheta i proektirovaniya (Acoustoelectronic Devices for Signal Processing and Generation. Principles of Operation, Calculation and Design Principles of Operation, Calculation and Design), Gulyaev, Yu.V., Ed., Moscow: Radiotekhnika, 2012.

    Google Scholar 

  18. Morgan, D., Surface Acoustic Wave Filters with Applications to Electronic Communications and Signal Processing, London: Academic, 2010.

    Google Scholar 

  19. Kovacs, G., Anhorn, M., Engan, H., et al., Improved material constants for LiNbO3 and LiTaO3, in Proceedings of the 1990 IEEE Ultrasonics Symposium, Honolulu, Hawaii, December 1990, vol. 1, pp. 435–438.

  20. Yantchev, V., Turner, P., and Plessky, V., COMSOL modeling of SAW resonators, in Proceedings of the IEEE Ultrasonics Symposium, 2016, pp. 1–4.

  21. Koskela, J., Plessky, V.P., and Salomaa, M.M., SAW/LSAW COM parameter extraction from computer experiments with harmonic admittance of a periodic array of electrodes, IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control, 1999, vol. 46, no. 4, pp. 806–816. https://doi.org/10.1109/58.775644

    Article  Google Scholar 

  22. Qiao, D., Liu, W., and Smith, P.M., General Green’s functions for SAW device analysis, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 1999, vol. 46, no. 5, pp. 1242–1253.

    Article  Google Scholar 

  23. Koigerov, A.S. and Balysheva, O.L., Numerical approach for extraction COM surface acoustic wave parameters from periodic structures analysis, in Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF), 2021, pp. 1–6.

    Google Scholar 

  24. Shen, J. et al., 3D layout of interdigital transducers for high frequency surface acoustic wave devices, IEEE Acces., 2020, vol. 8, pp. 123262–123271.

    Article  Google Scholar 

  25. Morita, T., Watanabe, Y., Tanaka, M., and Nakazawa, Y., Widebandlow loss double mode SAW filters, in Proceedings of the IEEE 1992 Ultrasonics Symposium, 1992, vol. 1, pp. 95–104.

  26. Hong, J. and Lancaster, M.J., Microstrip Filters for RF/Microwave Applications, New York: Wiley, 2001.

    Book  Google Scholar 

  27. Graczykowski, B., The reflection of Rayleigh surface waves from single steps and grooves, J. Appl. Phys., 2012, vol. 112, p. 103520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Koigerov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koigerov, A.S., Korlyakov, A.V. Finite Element Modeling of Surface Acoustic Wave Devices Using COMSOL. Russ Microelectron 51, 226–235 (2022). https://doi.org/10.1134/S1063739722040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722040072

Keywords:

Navigation