Skip to main content
Log in

A Novel Automatic Image Intensity Analysis Using Machine Learning Algorithms and Characterization of Tensile Fracture Surface of AA8011-B4C Nano-composite

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The growths in e-mobility are the factor that impetus the research in lightweight material with improved mechanical properties, especially strength. The research concentrates on developing a novel metal matrix nano-composite of high-quality AA8011 aluminium alloy reinforced with varying weight percentages of nano-particles of B4C (0, 0.3, 0.6, 0.9, 1.2 and 1.5 wt%). The high-energy electromagnetic frequency stir casting technique was used to fabricate nano-composite, which enhanced the wetting of matrix and reinforcement. The rupture strength of nano-composite primarily hinges on the structure and formation of nano-composite. The morphology and distribution of nano-particles in metal matrix nano-composites (MMNC) were characterized by using Field Emission Scanning Electron Microscope. The yield strength, yield point, tensile strength, elongation, and reduction of area of MMNC under uniaxial tensile stresses were determined by Universal Testing Machine. The machine learning algorithms automatically characterized the fractured material texture in conjunction with the described techniques. The unique textural information extracted from each fractured sample distinguished the surfaces as agglomeration, brittle and ductile texture. The fractography analysis of MMNCs revealed the transition of composite from cup and cone to cleavage fracture, which ensured the property change of matrix by the addition of nano-reinforced particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanwir Alam M D, and Ansari A H, Int. J Adv Technol Eng Sci 5 (2017).

  2. Yahaya S N M, and Majid A A A, Acad J Sci Res 5 (2017) 708.

    Google Scholar 

  3. Bauri R, Pancholi V, Samajdar I, and Surappa M K, Sci Technol Adv Mat 6 (2005) 933.

    Article  CAS  Google Scholar 

  4. Ramanan G, Suresh S, Rajesh Prabha N, and Edwin Raja Dhas J, Mater Res Express 6 (2019) 066544.

  5. Manivannana I, Ranganathan S, Gopalakannan S, Suresh S, Nagakarthigan K, and Jubendradass R, J Surf 8 (2017) 127.

    Google Scholar 

  6. Kailainathan S, Kalyana Sundaram S, and Nijanthan K, Int J Innov Res Sci Eng Technol 3 (2014).

  7. Fayomi J, Popoola A P I, Oladijo O P, Popoola O M, and Fayomi O S I, J Alloys Compd (2019)

  8. Aghaie-Khafri M, J Mater Sci 39 (2004) 6467.

    Article  CAS  Google Scholar 

  9. Yakubu O H, Usman I, Aliyu A, and Emmanuel O O, Niger J Technol 35 (2016) 122.

    Article  Google Scholar 

  10. Fayomi J, Popoola A P I, Oladijo O P, Popoola O M, and Fayomi O S I, Results Phys 14 (2019).

  11. Karthikkumar C, Baranirajan R, Premnauth I, and Manimaran P, Int J Eng Res Gen Sci 4 (2016).

  12. Pujar V, Srinivas H K, and Nagaral M, Int J Adv Mech Eng 8 (2018) 117.

    Google Scholar 

  13. Vijaya Ramnath B, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, and Siddique Ahmed Ghias A, Mater Des 58 (2014) 332.

  14. Suresh S M, Mishra D, Srinivasan A, Arunachalam R M, and Sasikumar R, J Eng Appl Sci 6 (2011).

  15. Vinyas M, Athul S J, Harursampath D, Loja Mar and Nguyen Thoi T, Mater Res Express 6 (2019).

  16. Kant S, and Verma A S, Int J Mech Solids 12 (2017) 61.

    Google Scholar 

  17. Amit P, Abhishek V, Bhaskar Chandra K, and Sansar S S, Int J Ap Mat Com-Pol 4 (2015).

  18. Selvan B M M, Anandakrishnan V, Duraiselvam M, and Sundarameenakshi S, Mater Test 61 (2019) 779.

    Article  CAS  Google Scholar 

  19. Harichandran R, and Selvakumar N, Arch Civ Mech Eng (2015)

  20. Shen Q, Wu C, Luo G, Fang P, Li C, Wang Y, and Zhang L J. Alloy Compd 588 (2014) 265.

    Article  CAS  Google Scholar 

  21. Ashok N, and Shanmughasundaram P, Mater Tech 51 (2017) 667.

    CAS  Google Scholar 

  22. Alizadeh A, and Taheri-Nassaj E, Mater Charact 67 (2012) 119.

    Article  CAS  Google Scholar 

  23. Satorres Martínez S, Ortega Vázquez C, Gamez Garcia J, and Gomez Ortega J, Measurement 111 (2017) 374.

    Article  Google Scholar 

  24. Jardine M A, Miller J A, Becker M, Computers and Geosciences 111 (2018) 105–117. https://doi.org/10.1016/j.cageo.2017.11.005

    Article  CAS  Google Scholar 

  25. Gonzalez-Ariasa C, Viafaraa C C, Coronadob J J, and Martinezc F, Wear 426–427 (2019) 1702.

    Article  Google Scholar 

  26. DeCost B L, and Holm E A, Comput Mater Sci 126 (2017) 438.

    Article  Google Scholar 

  27. Dutta S, Das A, Barat K, and Roy H, Measure 45 (2012) 1140.

    Google Scholar 

  28. Jun B, and Kim D, Pattern Recognit 45 (2012) 3304.

    Article  Google Scholar 

  29. Saad S, and Sagheer A, ICIAP (2015) 472

  30. Varol T, Canakci A, and Ozsahin S, Compos Part B Eng, 54 (2013) 224.

    Article  CAS  Google Scholar 

  31. Lloyd D J, Int Mater Rev 39 (1994) 1.

    Article  CAS  Google Scholar 

  32. Ibrahim I A, Mohamed F A, and Lavernia E J, J Mater Sci 26 (1991) 1137.

    Article  CAS  Google Scholar 

  33. Kelley P M, Int Met Rev 18 (1973) 31.

    Article  Google Scholar 

  34. Cortes C, and Vapnik V, Mach Learn 20 (1995) 273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, J., Raj, T.G.A., Roy, K.E.R. et al. A Novel Automatic Image Intensity Analysis Using Machine Learning Algorithms and Characterization of Tensile Fracture Surface of AA8011-B4C Nano-composite. Trans Indian Inst Met 75, 2891–2903 (2022). https://doi.org/10.1007/s12666-022-02654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02654-x

Keywords

Navigation