Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 11, 2022

A compact quad element MIMO antenna for LTE/5G (sub-6 GHz) applications

  • Ajit Kumar Singh ORCID logo EMAIL logo , Santosh Kumar Mahto and Rashmi Sinha
From the journal Frequenz

Abstract

In this paper, a compact I shaped monopole radiator with a dimension of 24 × 22 × 1.6 mm3 is proposed. The monopole radiator achieved an impedance bandwidth of 1.46 GHz (4.06–5.52 GHz) using partial ground plane. Further to cover the sub-6 GHz spectrum (3.4–3.6 GHz) for future 5G communications, a four-element multi-input multi-output (MIMO) antenna configuration is designed by utilizing the single element antenna. The operation bandwidth of 2.27 GHz (3.37–5.64 GHz) is enhanced by using a tapered microstrip feed line. Isolation is increased upto 40 dB over the operating band (3.37–5.64 GHz) by using a modified rectangular stub in the partial ground plane. This stub also provides a decoupling path and consequently limited amount of current couples to the neighbouring element due to surface waves. The modified stub suppress the surface waves and the near fields reducing the coupling between the antennas keeping it below −10 dB for the whole desired frequency range. Therefore, the proposed MIMO antenna achieved wide bandwidth of (3.37–5.64 GHz) and minimum isolation between antenna elements 1 & 4 is −10 dB in 3.4–3.6 GHz frequency band, whereas −15 dB between 3.8 and 5.64 GHz frequency band. The suggested MIMO antenna is designed on a FR4 substrate with a dielectric constant of 4.4 and a loss tangent of 0.02 and a 0.45λ 0 × 0.45λ 0 dimension. In terms of the envelope correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG), total active reflection coefficient (TARC), isolation between the ports, and channel capacity loss (CCL), the proposed antenna’s diversity performance characteristics are investigated and the obtained values are 0.04, 9.98, ±3, −11, −15 dB, 0.10 bits/s/Hz respectively. The antenna prototypes have been fabricated, and the measurements and simulations have been found to be in close agreement. Therefore, the proposed MIMO antenna covers n77/n78/n79 for 5G (sub-6 GHz) and LTE bands of 42/43/46.

Keywords: 5G; CCL; MEG; MIMO; tapered feed

Corresponding author: Ajit Kumar Singh, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Ranchi, Ranchi, India, 834010, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: a comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, https://doi.org/10.1109/comst.2016.2532458.Search in Google Scholar

[2] M. J. Marcus, “5G and “IMT for 2020 and beyond” [spectrum policy and regulatory issues],” IEEE Wireless Commun., vol. 22, no. 4, pp. 2–3, 2015, https://doi.org/10.1109/mwc.2015.7224717.Search in Google Scholar

[3] V. Babu Kumaravelu, G. Jaiswal, V. V. Gudla, G. Ramachandra Reddy, and A. Murugadass, “Modified spatial modulation: an alternate to spatial multiplexing for 5G-based compact wireless devices,” Arabian J. Sci. Eng., vol. 44, no. 8, pp. 6693–6709, 2019, https://doi.org/10.1007/s13369-018-3572-9.Search in Google Scholar

[4] Z. Ren and A. Zhao, “Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications,” IEEE Access, vol. 7, pp. 82288–82296, 2019, https://doi.org/10.1109/access.2019.2923666.Search in Google Scholar

[5] M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al.., “Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars,” Radio Sci., vol. 53, no. 11, pp. 1368–1381, 2018, https://doi.org/10.1029/2018rs006533.Search in Google Scholar

[6] A. A. Althuwayb, “Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications,” Arabian J. Sci. Eng., vol. 47, no. 3, pp. 2629–2638, 2022, https://doi.org/10.1007/s13369-021-05720-6.Search in Google Scholar

[7] Y.-L. Ban, C. Li, G. Wu, et al.., “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981–2988, 2016, https://doi.org/10.1109/access.2016.2582786.Search in Google Scholar

[8] M. Alibakhshikenari, B. S. Virdee, and E. Limiti, “Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125–300 GHz,” Optik, vol. 206, p. 163222, 2020, https://doi.org/10.1016/j.ijleo.2019.163222.Search in Google Scholar

[9] M. Alibakhshikenari, F. Babaeian, B. S. Virdee, et al.., “A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”,” IEEE Access, vol. 8, pp. 192965–193004, 2020, https://doi.org/10.1109/access.2020.3032826.Search in Google Scholar

[10] M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al.., “Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays,” Electronics, vol. 7, no. 9, p. 198, 2018, https://doi.org/10.3390/electronics7090198.Search in Google Scholar

[11] M. Alibakhshikenari, M. Khalily, B. Singh Virdee, C. Hwang See, R. A. Abd-Alhameed, and E. Limiti, “Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading,” IEEE Access, vol. 7, pp. 23606–23614, 2019, https://doi.org/10.1109/access.2019.2899326.Search in Google Scholar

[12] M. Alibakhshikenari, M. Khalily, B. Singh Virdee, C. Hwang See, R. A. Abd-Alhameed, and E. Limiti, “Mutual-coupling isolation using embedded metamaterial em bandgap decoupling slab for densely packed array antennas,” IEEE Access, vol. 7, pp. 51827–51840, 2019, https://doi.org/10.1109/access.2019.2909950.Search in Google Scholar

[13] M. Alibakhshikenari, C. H. See, B. S. Virdee, and R. A. Abd-Alhameed, “Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications,” Progress in Electromagnetics Research Letters, vol. 75, pp. 105–111, 2018. http://hdl.handle.net/10454/15908.10.2528/PIERL18021908Search in Google Scholar

[14] M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, “Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems,” Radio Sci., vol. 54, no. 11, pp. 1067–1075, 2019, https://doi.org/10.1029/2019rs006871.Search in Google Scholar

[15] M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al.., “Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems,” IET Microw. Antennas Propag., vol. 14, no. 3, pp. 183–188, 2020, https://doi.org/10.1049/iet-map.2019.0362.Search in Google Scholar

[16] M. Alibakhshikenari, B. S. Virdee, C. H. See, et al.., “Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures,” IET Microw. Antennas Propag., vol. 12, no. 14, pp. 2241–2247, 2018, https://doi.org/10.1049/iet-map.2018.5103.Search in Google Scholar

[17] M. Alibakhshi Kenari, “Printed planar patch antennas based on metamaterial,” Int. J. Electron. Lett., vol. 2, no. 1, pp. 37–42, 2014, https://doi.org/10.1080/21681724.2013.874042.Search in Google Scholar

[18] M. Alibakhshikenari, E. Limiti, M. Naser-Moghadasi, B. S. Virdee, and R. A. Sadeghzadeh, “A new wideband planar antenna with band-notch functionality at GPS, bluetooth and WiFi bands for integration in portable wireless systems,” AEU Int. J. Electron. Commun., vol. 72, pp. 79–85, 2017, https://doi.org/10.1016/j.aeue.2016.11.023.Search in Google Scholar

[19] R. Ali Sadeghzadeh, M. Alibakhshi-Kenari, and M. Naser-Moghadasi, “UWB antenna based on SCRLH-TLS for portable wireless devices,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 69–71, 2016, https://doi.org/10.1002/mop.29491.Search in Google Scholar

[20] M. Alibakhshikenari, B. S. Virdee, A. Abdulhadi Althuwayb, et al.., “Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THz integrated-circuit applications,” J. Infrared Millim. Terahertz Waves, vol. 42, no. 1, pp. 17–28, 2021, https://doi.org/10.1007/s10762-020-00753-8.Search in Google Scholar

[21] M. Alibakhshi-Kenari, M. Movahhedi, and H. Naderian, “A new miniature ultra wide band planar microstrip antenna based on the metamaterial transmission line,” in 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), IEEE, 2012, pp. 293–297.10.1109/APACE.2012.6457679Search in Google Scholar

[22] M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al.., “Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection,” IEEE Access, vol. 8, pp. 174667–174678, 2020, https://doi.org/10.1109/access.2020.3025672.Search in Google Scholar

[23] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Ali Sadeghzadeh, and B. Singh Virdee, “Metamaterial-based antennas for integration in uwb transceivers and portable microwave handsets,” Int. J. RF Microw. Computer-Aided Eng., vol. 26, no. 1, pp. 88–96, 2016, https://doi.org/10.1002/mmce.20942.Search in Google Scholar

[24] M. Alibakhshikenari, B. S. Virdee, A. Ali, and E. Limiti, “A novel monofilar-archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar systems,” Microw. Opt. Technol. Lett., vol. 60, no. 8, pp. 2055–2060, 2018, https://doi.org/10.1002/mop.31300.Search in Google Scholar

[25] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. Singh Virdee, and E. Limiti, “New compact antenna based on simplified CRLH-TL for UWB wireless communication systems,” Int. J. RF Microw. Computer-Aided Eng., vol. 26, no. 3, pp. 217–225, 2016, https://doi.org/10.1002/mmce.20956.Search in Google Scholar

[26] Z. An and M. He, “A simple planar antenna for sub-6 GHz applications in 5G mobile terminals,” Appl. Comput. Electromagn. Soc. J., vol. 35, pp. 10–15, 2020.Search in Google Scholar

[27] A. Kumar Arya, S. J. Kim, and S. Kim, “A dual-band antenna for LTE-R and 5G lower frequency operations,” Progr. Electromagn. Res. Lett., vol. 88, pp. 113–119, 2020, https://doi.org/10.2528/pierl19081502.Search in Google Scholar

[28] J.-N. Sun, J.-L. Li, and L. Xia, “A dual-polarized magneto-electric dipole antenna for application to n77/n78 band,” IEEE Access, vol. 7, pp. 161708–161715, 2019, https://doi.org/10.1109/access.2019.2951414.Search in Google Scholar

[29] M. Khalifa, L. Khashan, H. Badawy, and F. Ibrahim, “Broadband printed-dipole antenna for 4G/5G smartphones,” in Journal of Physics: Conference Series, vol. 1447, IOP Publishing, 2020, p. 012049.10.1088/1742-6596/1447/1/012049Search in Google Scholar

[30] N. Sekeljic, Z. Yao, and H.-H. Hsu, “5G broadband antenna for sub-6 GHz wireless applications,” in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, IEEE, 2019, pp. 147–148.10.1109/APUSNCURSINRSM.2019.8888509Search in Google Scholar

[31] X. Tang, Y. Jiao, H. Li, et al.., “Ultra-wideband patch antenna for sub-6 GHz 5G communications,” in 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), IEEE, 2019, pp. 1–3.10.1109/iWEM.2019.8887933Search in Google Scholar

[32] G. Jin, C. Deng, J. Yang, Y. Xu, and S. Liao, “A new differentially-fed frequency reconfigurable antenna for WLAN and sub-6 GHz 5G applications,” IEEE Access, vol. 7, pp. 56539–56546, 2019, https://doi.org/10.1109/access.2019.2901760.Search in Google Scholar

[33] G. Gopal and A. Thangakalai, “Cross dipole antenna for 4G and sub-6 GHz 5G base station applications,” Appl. Comput. Electromagn. Soc. J., vol. 35, pp. 16–22, 2020.Search in Google Scholar

[34] W. An, L. Yue, H. Fu, J. Ma, W. Chen, and B. Feng, “Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 4, pp. 621–624, 2018, https://doi.org/10.1109/lawp.2018.2806369.Search in Google Scholar

[35] R. Azim, A. K. M. M. H. Meaze, A. Affandi, et al.., “A multi-slotted antenna for LTE/5G sub-6 GHz wireless communication applications,” Int. J. Microw. Wirel. Technol., vol. 13, no. 5, pp. 486–496, 2021, https://doi.org/10.1017/s1759078720001336.Search in Google Scholar

[36] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “Four element planar MIMO antenna design for long-term evolution operation,” IETE J. Res., vol. 64, no. 3, pp. 367–373, 2018, https://doi.org/10.1080/03772063.2017.1355755.Search in Google Scholar

[37] S. Chouhan and L. Malviya, “Four-port shared rectangular radiator with defected ground for wireless application,” Int. J. Commun. Syst., vol. 33, no. 9, p. e4356, 2020, https://doi.org/10.1002/dac.4356.Search in Google Scholar

[38] S. Chouhan, D. Kumar Panda, and V. Singh Kushwah, “Modified circular common element four-port multiple-input-multiple-output antenna using diagonal parasitic element,” Int. J. RF Microw. Computer-Aided Eng., vol. 29, no. 2, p. e21527, 2019, https://doi.org/10.1002/mmce.21527.Search in Google Scholar

[39] A. Moradikordalivand, C. Y. Leow, T. Abd Rahman, S. Ebrahimi, and T. H. Chua, “Wideband MIMO antenna system with dual polarization for WiFi and LTE applications,” Int. J. Microw. Wirel. Technol., vol. 8, no. 3, pp. 643–650, 2016, https://doi.org/10.1017/s175907871500032x.Search in Google Scholar

[40] M. Manohar, R. Singh Kshetrimayum, and A. Kumar Gogoi, “Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications,” IET Microw. Antennas Propag., vol. 8, no. 1, pp. 39–45, 2014, https://doi.org/10.1049/iet-map.2013.0094.Search in Google Scholar

[41] A. Alizadeh Ghannad, M. Khalily, P. Xiao, R. Tafazolli, and A. A. Kishk, “Enhanced matching and vialess decoupling of nearby patch antennas for MIMO system,” IEEE Antenn. Wireless Propag. Lett., vol. 18, no. 6, pp. 1066–1070, 2019, https://doi.org/10.1109/lawp.2019.2906308.Search in Google Scholar

[42] A. K. Singh, S. Kumar Mahto, and R. Sinha, “Reconfigurable dual element dual band mimo antenna for 5G (sub-6 GHz) and WLAN applications,” COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 2022 (ahead-of-print), https://doi.org/10.1108/compel-02-2022-0091.Search in Google Scholar

[43] A. A. Glazunov, A. F. Molisch, and F. Tufvesson, “Mean effective gain of antennas in a wireless channel,” IET Microw. Antennas Propag., vol. 3, no. 2, pp. 214–227, 2009, https://doi.org/10.1049/iet-map:20080041.10.1049/iet-map:20080041Search in Google Scholar

[44] A. K. Singh, S. Kumar Mahto, and R. Sinha, “Compact super-wideband MIMO antenna with improved isolation for wireless communications,” Frequenz, vol. 75, nos. 9–10, pp. 407–417, 2021, https://doi.org/10.1515/freq-2020-0213.Search in Google Scholar

[45] A. K. Singh, S. K. Mahto, and R. Sinha, “A miniaturized MIMO antenna for C, X, and Ku band applications,” Progr. Electromagn. Res. C, vol. 117, pp. 31–40, 2021, https://doi.org/10.2528/pierc21100202.Search in Google Scholar

Received: 2022-02-09
Accepted: 2022-06-21
Published Online: 2022-07-11
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2022-0028/html
Scroll to top button