Skip to main content
Log in

Ellipse detection using the edges extracted by deep learning

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Existing edge detection methods are based on fixed logics, which are not intelligent enough to distinguish useful edges and useless/noise edges. Recent ellipse detection methods developed some excellent algorithms that can still detect ellipses, while a large number of noise edges exist. However, these algorithms are compromised that will lose some precision and recall. This paper proposes a deep learning model that can intelligently distinguish useful edges and useless edges. Therefore, high-quality edge maps with low noise can be obtained. An arc-growing-based ellipse detection method is also proposed to take full advantage of the high-quality edge maps. Experiments are performed to reveal the mechanism of the deep learning model and to verify the performance of the proposed method. The experimental results demonstrate that the proposed method performs far better than the state-of-the-art in terms of precision, recall and the F-measure on industrial images and performs slightly better on natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47(11), 3693–3708 (2014)

    Article  Google Scholar 

  2. Cakir, H.I., Benligiray, B., Topal, C.: Combining feature-based and model-based approaches for robust ellipse detection. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp. 2430–2434. IEEE (2016)

  3. Liang, J., Wang, Y., Zeng, X.: Robust ellipse fitting via half-quadratic and semidefinite relaxation optimization. IEEE Trans. Image Process. 24(11), 4276–4286 (2015)

    Article  MathSciNet  Google Scholar 

  4. Hu, Z., Feipeng, D., Qin, L.: Self-calibration using two same circles. Chin. J. Sci. Instrum. 3, 618–624 (2010)

    Google Scholar 

  5. Teutsch, C., Berndt, D., Trostmann, E., Weber, M.: Real-time detection of elliptic shapes for automated object recognition and object tracking. In: Machine Vision Applications in Industrial Inspection XIV, vol. 6070, p. 60700. International Society for Optics and Photonics (2006)

  6. Soetedjo, A., Yamada, K.: Fast and robust traffic sign detection. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1341–1346. IEEE (2005)

  7. Ono, K., Ogawa, T., Maeda, Y., Nakatani, S., Nagayasu, G., Shimizu, R., Ouchi, N.: Detection, localization and picking up of coil springs from a pile. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3477–3482. IEEE (2014)

  8. Chia, A.Y.-S., Rahardja, S., Rajan, D., Leung, M.K.: A split and merge based ellipse detector with self-correcting capability. IEEE Trans. Image Process. 20(7), 1991–2006 (2010)

    Article  MathSciNet  Google Scholar 

  9. Prasad, D.K., Leung, M.K., Cho, S.-Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  11. Zhang, S.-C., Liu, Z.-Q.: A robust, real-time ellipse detector. Pattern Recogn. 38(2), 273–287 (2005)

    Article  MathSciNet  Google Scholar 

  12. Sewisy, A.A., Leberl, F.: Detection ellipses by finding lines of symmetry in the images via an Hough transform applied to straight lines. Image Vis. Comput. 19(12), 857–866 (2001)

    Article  Google Scholar 

  13. Guil, N., Zapata, E.L.: Lower order circle and ellipse Hough transform. Pattern Recogn. 30(10), 1729–1744 (1997)

    Article  Google Scholar 

  14. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (rht). Pattern Recogn. Lett. 11(5), 331–338 (1990)

    Article  Google Scholar 

  15. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic Hough transform. Pattern Recogn. 24(4), 303–316 (1991)

    Article  MathSciNet  Google Scholar 

  16. Grbić, R., Grahovac, D., Scitovski, R.: A method for solving the multiple ellipses detection problem. Pattern Recogn. 60, 824–834 (2016)

    Article  Google Scholar 

  17. Mai, F., Hung, Y., Zhong, H., Sze, W.: A hierarchical approach for fast and robust ellipse extraction. Pattern Recogn. 41(8), 2512–2524 (2008)

    Article  Google Scholar 

  18. Kim, E., Haseyama, M., Kitajima, H.: Fast and robust ellipse extraction from complicated images. In: Proceedings of IEEE Information Technology and Applications. Citeseer (2002)

  19. Prasad, D.K., Leung, M.K., Quek, C.: Ellifit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recogn. 46(5), 1449–1465 (2013)

    Article  Google Scholar 

  20. Dong, H., Chen, I.-M., Prasad, D.K.: Robust ellipse detection via arc segmentation and classification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 66–70. IEEE (2017)

  21. Meng, C., Li, Z., Bai, X., Zhou, F.: Arc adjacency matrix-based fast ellipse detection. IEEE Trans. Image Process. 29, 4406–4420 (2020)

    Article  MathSciNet  Google Scholar 

  22. Lu, C., Xia, S., Shao, M., Fu, Y.: Arc-support line segments revisited: an efficient high-quality ellipse detection. IEEE Trans. Image Process. 29, 768–781 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yuen, H., Illingworth, J., Kittler, J.: Detecting partially occluded ellipses using the Hough transform. Image Vis. Comput. 7(1), 31–37 (1989)

    Article  Google Scholar 

  24. Chia, A.Y.S., Leung, M.K., Eng, H.-L., Rahardja, S.: Ellipse detection with Hough transform in one dimensional parametric space. In: 2007 IEEE International Conference on Image Processing, vol. 5, p. 333. IEEE (2007)

  25. Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: Object Recognition Supported by User Interaction for Service Robots, vol. 2, pp. 957–960. IEEE (2002)

  26. Lu, T., Hu, W., Liu, C., Yang, D.: Effective ellipse detector with polygonal curve and likelihood ratio test. IET Comput. Vis. 9(6), 914–925 (2015)

    Article  Google Scholar 

  27. Fornaciari, M., Prati, A.: Very fast ellipse detection for embedded vision applications. In: 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6. IEEE (2012)

  28. Jia, Q., Fan, X., Luo, Z., Song, L., Qiu, T.: A fast ellipse detector using projective invariant pruning. IEEE Trans. Image Process. 26(8), 3665–3679 (2017)

    Article  MathSciNet  Google Scholar 

  29. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  30. Sobel, I., Feldman, G.: A \(3\times 3\) isotropic gradient operator for image processing. A talk at the Stanford Artificial Project in 271–272 (1968)

  31. Pătrăucean, V., Gurdjos, P., Von Gioi, R.G.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: European Conference on Computer Vision, pp. 572–585. Springer (2012)

  32. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Commun. ACM 32(3), 359–373 (1989)

    Article  MathSciNet  Google Scholar 

  33. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  34. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  35. Marošević, T., Scitovski, R.: Multiple ellipse fitting by center-based clustering. Croat. Oper. Res. Rev. 6(1), 43–53 (2015)

    Article  MathSciNet  Google Scholar 

  36. Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73, 132–141 (2014)

    Article  Google Scholar 

  37. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

Download references

Funding

Funding was provided by National Key Research and Development Program of China (Grant No. 2016YFE0206200) and National Natural Science Foundation of China (Grant Nos. U1613205, 51675291)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, R., Chen, K. et al. Ellipse detection using the edges extracted by deep learning. Machine Vision and Applications 33, 63 (2022). https://doi.org/10.1007/s00138-022-01319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-022-01319-5

Keywords

Navigation