Skip to main content
Log in

Electron transport properties of the transition metal dichalcogenides composite WX2-MoX2 (X≡S, Se, Te) nanowires under the external strain

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have investigated the electronic structure and transport properties of the transition metal dichalcogenides composite WX2-MoX2 (X≡S, Se, Te) nanowires under the external strain, in the method of the first-principles calculation combining the Density functional theory (DFT) and the Non-equilibrium Green’s function (NEGF). First, we have designed the two terminal electron transport devices based on the stable transition metal dichalcogenides (TMDs) WX2-MoX2 (X≡S, Se, Te) composite nanowires for the first time. Second, the electronic structure and transport properties of the WS2-MoS2 composite nanowire have been demonstrated to be more sensitive to the external strain when compared to that of the composite WSe2/Te2-MoSe2/Te2 nanowires, the external compressive strain may significantly enchance the differential negative resistance (DNR) effect of the WSe2-MoSe2 composite nanowire based device, while the stretch strain should induce the interesting DNR in the WTe2-MoTe2 composite nanowire device. Finally, the obtained results have been physically explained from the integral area of the transmission coefficient in the bias voltage window, and may be of importance in the design of the nanoelectronic devices based on transition metal dichalcogenides composites.

Graphical abstract

The current–voltage characteristic curves of the two terminal a WS2-MoS2, b WSe2-MoSe2, and c WTe2-MoTe2 composite nanowires under the strain of – 7–7%. The pentagram marked (black) solid line indicates the unstrained case, the solid and hollow circle marked (red) dashed lines indicate the 3% and − 3% strain case, the solid and hollow squares marked (blue) dashed-dot lines denote the 5% and − 5% strain case, while the solid and hollow triangles marked (purple) dotted lines illustrate the 7% and − 7% strain case, respectively. The current of the unstrained WS2-MoS2 composite nanowire device is nearly 0 in the bias range of [− 0.2 V, + 0.2 V] while that should decrease with the increase of the bias voltage in the range of [+ 0.8 V, + 1.0 V], the system behaves an interesting negative differential resistance (NDR) effect. Additionally, the device behaves typical semiconducting feature in the whole bias voltage range under the − 3% compressed strain, while the device current should decrease with the increase of the bias voltage at the regime of [± 0.4 V, ± 0.6 V] and [± 0.8 V, ± 1.0 V], respectively, under the 3% stretched strain. The device should behave significant NDR effect in the bias voltage of [± 0.6 V, ± 0.8 V] under the 5% stretched strain, while one observes the NDR effect at bias voltage range of [− 0.8 V, − 1.0 V], [− 0.4 V, − 0.6 V] and [+ 0.4 V, + 1.0 V], respectively, under the 7% stretched strain. Furthermore, as demonstrated in (b), the current–voltage characteristics curve of the two terminal WSe2-MoSe2 composite nanowires electron device under the strain of – 7–7% behaves typical metallic features. The external strain should significantly enhance the NDR effect of the WSe2-MoSe2 composite nanowires electron device, especially in the compressed – 3– − 7% strain cases. Finally, as illustrated in (c), the current–voltage curve of the two terminal WTe2-MoTe2 composite nanowires electron device under the strain of – 7–7% presents the typical semiconducting features. The observed NDR effect of the composite nanowire devices has been physically explained from the transmission spectra and the integral area of the transmission coefficient in the bias voltage window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All the first-principle calculated data have been provided in Table 1 of the paper.]

References

  1. J. Li, Y. Duan, Y. Zhou, RSC Adv. 7, 53696–53705 (2017)

    Article  ADS  Google Scholar 

  2. Y.H. Zhou, G.M. Zhai, T. Yan, J.S. Francisco, H. Tian, Q. Huang, S.Y. Du, J. Phys. Chem. C 122, 14908–14917 (2018)

    Article  Google Scholar 

  3. S.S. Yu, C. Wang, W.T. Zheng, Phys. Status Solidi A 208, 2328–2331 (2011)

    Article  ADS  Google Scholar 

  4. H. Wang, Y. Wang, B. Bai, Appl. Surf. Sci. 531, 147347 (2020)

    Article  Google Scholar 

  5. H. Zhao, X.W. Zhang, X.C. Liu, Commun. Theo. Phys. 70, 829 (2018)

    Article  Google Scholar 

  6. R. Tenne, L. Margulis, M. Genut, Nature 360, 444–446 (1992)

    Article  ADS  Google Scholar 

  7. O. Ávalos-Ovando, D. Mastrogiuseppe, S.E. Ulloa, Phys. Rev. B 99, 035107 (2019)

    Article  ADS  Google Scholar 

  8. M. Liu, J. Shi, Y. Li, X. Zhou, D. Ma, Y. Qi, Y. Zhang, Z. Liu, Small 13, 1602967 (2017)

    Article  Google Scholar 

  9. B. Kirubasankar, P. Palanisamy, S. Arunachalam, Chem. Eng. J. 355, 881–890 (2019)

    Article  Google Scholar 

  10. N.K. Nepal, L.P. Yu, Q. Yan, Phys. Rev. Mater. 3, 073601 (2019)

    Article  Google Scholar 

  11. M.H. Chang, C.J. Chen, M.S. Lai, New Engl. J. Med. 26, 1855–1859 (1997)

    Article  Google Scholar 

  12. S. Larentis, B. Fallahazad, E. Tututc, Appl. Phys. Lett. 101, 223104 (2012)

    Article  ADS  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, A. Kis, Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  14. M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, ACS Nano 7, 4449–4458 (2013)

    Article  Google Scholar 

  15. Y. Zhou, Y. Yang, Y. Guo, Appl. Surf. Sci. 497, 143764 (2019)

    Article  Google Scholar 

  16. L. Hui, Z. Yi, J. Dong, Nanoelectronics and Materials Development (InTech, USA, 2016), pp. 117–139

    Google Scholar 

  17. D. Çakır, F.M. Peeters, Phys. Rev. B 89, 245403 (2014)

    Article  ADS  Google Scholar 

  18. S. Oshima, M. Toyoda, S. Saito, Phys. Rev. Mater. 4, 026004 (2020)

    Article  Google Scholar 

  19. M. Tan, L. Zhang, W.Z. Liang, Acta Phys. Chim. Sin 35, 385–393 (2019)

    Article  Google Scholar 

  20. M. Ghorbani-Asl, S. Borini, A. Kuc, Phys. Rev. B 87, 235434 (2013)

    Article  ADS  Google Scholar 

  21. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  22. D. Waldron, P. Haney, B. Larade, A. Mac Donald, H. Guo, Phys. Rev. Lett. 96, 166804 (2006)

    Article  ADS  Google Scholar 

  23. D. Waldron, V. Timoshevskii, Y. Hu, K. Xia, H. Guo, Phys. Rev. Lett. 97, 226802 (2006)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. B. Hammer, L. Hansen, J. Nørskov, Phys. Rev. B 59, 7413 (1999)

    Article  ADS  Google Scholar 

  28. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Nano Lett. 10, 4975 (2010)

    Article  ADS  Google Scholar 

  29. A. Copple, N. Ralston, X. Peng, Appl. Phys. Lett. 100, 2939 (2012)

    Article  Google Scholar 

  30. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11664010 and 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2021JJ30549 and 2017JJ2217), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 18A293), and the Research Program of Jishou University (Grant Nos. Jdy19039, Jdy20031, JGY202108, and JGY202118).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Corresponding author

Correspondence to Wenhu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Cheng, Y., Luo, S. et al. Electron transport properties of the transition metal dichalcogenides composite WX2-MoX2 (X≡S, Se, Te) nanowires under the external strain. Eur. Phys. J. B 95, 110 (2022). https://doi.org/10.1140/epjb/s10051-022-00374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00374-1

Navigation