Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mitochondrial heterogeneity and homeostasis through the lens of a neuron

Abstract

Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial network in different cell types.
Fig. 2: Mitochondrial morphology and localization in neurons.
Fig. 3: Molecular mechanisms underlying mitochondrial trafficking and positioning.
Fig. 4: Mitochondrial quality-control pathways.

Similar content being viewed by others

References

  1. Ajioka, R. S., Phillips, J. D. & Kushner, J. P. Biosynthesis of heme in mammals. Biochim. Biophys. Acta 1763, 723–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Guo, L., Tian, J. & Du, H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis. 57, 1071–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, W. L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Kuznetsov, A. V., Hermann, M., Saks, V., Hengster, P. & Margreiter, R. The cell-type specificity of mitochondrial dynamics. Int. J. Biochem. Cell Biol. 41, 1928–1939 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Mironov, S. L. ADP regulates movements of mitochondria in neurons. Biophys. J. 92, 2944–2952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Misgeld, T. & Schwarz, T. L. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96, 651–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuler, M. H. et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol. Biol. Cell 28, 2159–2169 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 e866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benador, I. Y., Veliova, M., Liesa, M. & Shirihai, O. S. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 29, 827–835 (2019). This paper summarizes a specialized role for LDM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pathak, D. et al. The role of mitochondrially derived ATP in synaptic vesicle recycling. J. Biol. Chem. 290, 22325–22336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall, C. N., Klein-Flugge, M. C., Howarth, C. & Attwell, D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012). This paper shows that neurons rely on mitochondrial oxidative phosphorylation for synaptic transmission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, S., Xiong, G. J., Huang, N. & Sheng, Z. H. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat. Metab. 2, 1077–1095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176, 73–84 e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008). This paper demonstrates mitochondrial protein heterogeneity across tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fecher, C. et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci. 22, 1731–1742 (2019). This paper reveals cell-type-specific mitochondrial heterogeneity in the brain.

    Article  CAS  PubMed  Google Scholar 

  19. Ashrafi, G., de Juan-Sanz, J., Farrell, R. J. & Ryan, T. A. Molecular tuning of the axonal mitochondrial Ca2+ uniporter ensures metabolic flexibility of neurotransmission. Neuron 105, 678–687(2020).

    Article  CAS  PubMed  Google Scholar 

  20. Silva, B. et al. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat. Metab. https://doi.org/10.1038/s42255-022-00528-6 (2022). This paper shows that under starvation glia provide alternative fuel for neuronal metabolism and activity.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535 e1514 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Graham, L. C. et al. Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture. Mol. Neurodegener. 12, 77 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Faitg, J. et al. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep. 36, 109509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volgyi, K. et al. Synaptic mitochondria: a brain mitochondria cluster with a specific proteome. J. Proteom. 120, 142–157 (2015).

    Article  CAS  Google Scholar 

  25. Lai, J. C., Walsh, J. M., Dennis, S. C. & Clark, J. B. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28, 625–631 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, M. R., Sullivan, P. G. & Geddes, J. W. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J. Biol. Chem. 281, 11658–11668 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, R. L., Kulbe, J. R., Singh, I. N., Wang, J. A. & Hall, E. D. Synaptic mitochondria are more susceptible to traumatic brain injury-induced oxidative damage and respiratory dysfunction than non-synaptic mitochondria. Neuroscience 386, 265–283 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Ashrafi, G., Wu, Z., Farrell, R. J. & Ryan, T. A. GLUT4 mobilization supports energetic demands of active synapses. Neuron 93, 606–615(2017). This paper shows that synaptic activity recruits glucose transporters to the presynaptic membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Yellen, G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 217, 2235–2246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dienel, G. A. Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow. Metab. 32, 1107–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Diaz-Garcia, C. M. et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26, 361–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gold, P. E. Glucose modulation of memory storage processing. Behav. Neural Biol. 45, 342–349 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Padamsey, Z., Katsanevaki, D., Dupuy, N. & Rochefort, N. L. Neocortex saves energy by reducing coding precision during food scarcity. Neuron https://doi.org/10.1016/j.neuron.2021.10.024 (2021).

    Article  PubMed  Google Scholar 

  35. Yellen, G. Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia 49, 80–82 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M. & Bellen, H. J. The glia-neuron lactate shuttle and Elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719–737 e716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 e674 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Basu, H. et al. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J. Cell Biol. 220, e201912077 (2021).

  40. Pekkurnaz, G., Trinidad, J. C., Wang, X., Kong, D. & Schwarz, T. L. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158, 54–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berthet, A. et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J. Neurosci. 34, 14304–14317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Misko, A. L., Sasaki, Y., Tuck, E., Milbrandt, J. & Baloh, R. H. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J. Neurosci. 32, 4145–4155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oettinghaus, B. et al. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ. 23, 18–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Iannielli, A. et al. Reconstitution of the HUman Nigro-striatal Pathway On-a-chip Reveals OPA1-dependent mitochondrial defects and loss of dopaminergic synapses. Cell Rep. 29, 4646–4656(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaninello, M. et al. Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat. Commun. 11, 4029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rawson, R. L. et al. Axons degenerate in the absence of mitochondria in C. elegans. Curr. Biol. 24, 760–765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agostini, M. et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502–1514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, A. et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat. Commun. 3, 1250 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5, e13374 (2016).

  50. Lewis, T. L. Jr., Turi, G. F., Kwon, S. K., Losonczy, A. & Polleux, F. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr. Biol. 26, 2602–2608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smit-Rigter, L. et al. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr. Biol. 26, 2609–2616 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Courchet, J. et al. Terminal axon branching is regulated by the LKB1–NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153, 1510–1525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lopez-Domenech, G. et al. Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep. 17, 317–327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith, H. L. et al. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 5, e15275 (2016).

  55. Lees, R. M., Johnson, J. D. & Ashby, M. C. Presynaptic boutons that contain mitochondria are more stable. Front. Synaptic Neurosci. 11, 37 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Pulido, C. & Ryan, T. A. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. Sci. Adv. 7, eabi9027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, Y. et al. Nanoscale 3D EM reconstructions reveal intrinsic mechanisms of structural diversity of chemical synapses. Cell Rep. 35, 108953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santuy, A. et al. A quantitative study on the distribution of mitochondria in the neuropil of the juvenile rat somatosensory cortex. Cereb. Cortex 28, 3673–3684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sung, J. Y. et al. WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc. Natl Acad. Sci. USA 105, 3112–3116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Divakaruni, S. S. et al. Long-term potentiation requires a rapid burst of dendritic mitochondrial fission during induction. Neuron 100, 860–875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jang, S. et al. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys. J. 120, 1170–1186 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90, 278–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agrawal, A., Pekkurnaz, G. & Koslover, E. F. Spatial control of neuronal metabolism through glucose-mediated mitochondrial transport regulation. eLife 7, e40986 (2018).

  65. Chen, S., Owens, G. C., Crossin, K. L. & Edelman, D. B. Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol. Cell Neurosci. 36, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Chang, D. T., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baas, P. W., Black, M. M. & Banker, G. A. Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J. Cell Biol. 109, 3085–3094 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Aizawa, H. et al. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287–1296 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Kanai, Y. et al. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374–6384 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, KIF5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Nangaku, M. et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209–1220 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Tanaka, K., Sugiura, Y., Ichishita, R., Mihara, K. & Oka, T. KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J. Cell Sci. 124, 2457–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Wozniak, M. J., Melzer, M., Dorner, C., Haring, H. U. & Lammers, R. The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol. 6, 35 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stowers, R. S., Megeath, L. J., Gorska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002). This paper discovers the mitochondrial motor–adapter: milton.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fransson, S., Ruusala, A. & Aspenstrom, P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 344, 500–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Fenton, A. R., Jongens, T. A. & Holzbaur, E. L. F. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat. Commun. 12, 4578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haghnia, M. et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell 18, 2081–2089 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Macaskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saotome, M. et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. USA 105, 20728–20733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brickley, K., Pozo, K. & Stephenson, F. A. N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex. Biochim. Biophys. Acta 1813, 269–281 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Morotz, G. M. et al. Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum. Mol. Genet 21, 1979–1988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morris, R. L. & Hollenbeck, P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. cell Biol. 131, 1315–1326 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Oeding, S. J. et al. Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J. Cell Sci. 131, jcs219469 (2018).

  90. Lopez-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37, 321–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Quintero, O. A. et al. Human MYO19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–2013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, Y. & Sheng, Z. H. Kinesin-1–syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202, 351–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kang, J. S. et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137–148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutnick, A., Banghart, M. R., West, E. R. & Schwarz, T. L. The light-sensitive dimerizer zapalog reveals distinct modes of immobilization for axonal mitochondria. Nat. Cell Biol. 21, 768–777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ames, A. III CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Steiner, P. Brain fuel utilization in the developing brain. Ann. Nutr. Metab. 75, 8–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Iyer, S. P. & Hart, G. W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278, 24608–24616 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Hart, G. W. & Akimoto, Y. in Essentials of Glycobiology 2nd edn (eds Varti, A. et al.) Ch. 18 (2009).

  99. Li, Y. et al. HUMMR, a hypoxia- and HIF-1α-inducible protein, alters mitochondrial distribution and transport. J. cell Biol. 185, 1065–1081 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Debattisti, V., Gerencser, A. A., Saotome, M., Das, S. & Hajnoczky, G. ROS control mitochondrial motility through p38 and the motor adaptor miro/trak. Cell Rep. 21, 1667–1680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liao, P. C., Tandarich, L. C. & Hollenbeck, P. J. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila. PLoS ONE 12, e0178105 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Fang, C., Bourdette, D. & Banker, G. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases. Mol. Neurodegener. 7, 29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rintoul, G. L., Bennett, V. J., Papaconstandinou, N. A. & Reynolds, I. J. Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J. Neurochem. 97, 800–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Zanelli, S. A., Trimmer, P. A. & Solenski, N. J. Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia. J. Neurochem. 97, 724–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, S., Owens, G. C. & Edelman, D. B. Dopamine inhibits mitochondrial motility in hippocampal neurons. PLoS ONE 3, e2804 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chada, S. R. & Hollenbeck, P. J. Mitochondrial movement and positioning in axons: the role of growth factor signaling. J. Exp. Biol. 206, 1985–1992 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Chada, S. R. & Hollenbeck, P. J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr. Biol. 14, 1272–1276 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Vagnoni, A. & Bullock, S. L. A cAMP/PKA/Kinesin-1 axis promotes the axonal transport of mitochondria in aging Drosophila neurons. Curr. Biol. 28, 1265–1272(2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, L. et al. A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nat. Metab. 3, 1242–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N. & Starkov, A. A. Mitochondrial ROS metabolism: 10 years later. Biochem. 80, 517–531 (2015).

    CAS  Google Scholar 

  111. Wu, Z., Sainz, A. G. & Shadel, G. S. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem. Sci. 46, 812–821 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Goldsmith, J., Ordureau, A., Harper, J. W. & Holzbaur, E. L. F. Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron 110, 967–976 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Eliyahu, E. et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol. Cell. Biol. 30, 284–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Gehrke, S. et al. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cioni, J. M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harbauer, A. B. et al. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron 110, 1516–1531 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Kuzniewska, B. et al. Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Rep. 21, e48882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gerdes, F., Tatsuta, T. & Langer, T. Mitochondrial AAA proteases—towards a molecular understanding of membrane-bound proteolytic machines. Biochim. Biophys. Acta 1823, 49–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Anderson, N. S. & Haynes, C. M. Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol. 30, 428–439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014). This paper shows the regulatory mechanism underlying MDV formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lin, M. Y. et al. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94, 595–610 e596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Konig, T. et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat. Cell Biol. 23, 1271–1286 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Schuler, M. H. et al. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol. Cell 81, 3786–3802(2021).

    Article  CAS  PubMed  Google Scholar 

  124. Towers, C. G. et al. Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev. Cell 56, 2029–2042(2021).

    Article  CAS  PubMed  Google Scholar 

  125. Rosina, M. et al. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34, 533–548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, X. et al. Mitochondria shed their outer membrane in response to infection-induced stress. Science 375, eabi4343 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Fleming, A. et al. The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Lou, G. et al. Mitophagy and neuroprotection. Trends Mol. Med. 26, 8–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Ashrafi, G., Schlehe, J. S., LaVoie, M. J. & Schwarz, T. L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 655–670 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cornelissen, T. et al. Deficiency of Parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7, e35878 (2018).

  132. Lee, J. J. et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of PINK1 or Parkin. J. Cell Biol. 217, 1613–1622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McWilliams, T. G. et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27, 439–449(2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, Y. & Dorn, G. W. 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shlevkov, E., Kramer, T., Schapansky, J., LaVoie, M. J. & Schwarz, T. L. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc. Natl Acad. Sci. USA 113, E6097–E6106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lai, Y. C. et al. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J. 34, 2840–2861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. cell Biol. 205, 143–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 510, 162–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2, 120080 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu Rev. Pathol. 15, 235–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367–371 (2017). This article shows that misfolded proteins and dysfunctional organelles are expelled from neurons in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Davis, C. H. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hsieh, C. H. et al. Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hsieh, C. H. et al. Miro1 marks Parkinson’s disease subset and Miro1 reducer rescues neuron loss in Parkinson’s models. Cell Metab. 30, 1131–1140 e1137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lopez-Domenech, G. et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 40, e100715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Barel, O. et al. Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain 140, 568–581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet. 36, 449–451 (2004).

    Article  PubMed  CAS  Google Scholar 

  154. Carelli, V. et al. Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann. Neurol. 78, 21–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saeed, M. Genomic convergence of locus-based GWAS meta-analysis identifies AXIN1 as a novel Parkinson’s gene. Immunogenetics 70, 563–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Grossmann, D. et al. Mutations in RHOT1 disrupt endoplasmic reticulum-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson’s disease. Antioxid. Redox Signal 31, 1213–1234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016). This paper shows the involvement of PINK1 and Parkin in immune activation.

    Article  CAS  PubMed  Google Scholar 

  159. Narendra, D., Walker, J. E. & Youle, R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4, a011338 (2012).

  160. Kitada, T. et al. Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nguyen, D., Bharat, V., Conradson, D. M., Nandakishore, P. & Wang, X. Miro1 impairment in a Parkinson’s at-risk cohort. Front Mol. Neurosci. 14, 734273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Birsa, N. et al. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the parkin ubiquitin ligase. J. Biol. Chem. 289, 14569–14582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shaltouki, A., Hsieh, C. H., Kim, M. J. & Wang, X. Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol. 136, 607–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fang, E. F. et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xie, C. et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng. 6, 76–93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Clark, E. H., Vazquez de la Torre, A., Hoshikawa, T. & Briston, T. Targeting mitophagy in Parkinson’s disease. J. Biol. Chem. 296, 100209 (2020).

  170. Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fang, E. F. et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN–1/Nrf2 pathway. Sci. Rep. 7, 46208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhao, J. et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32, 4814–4824 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282(2021).

    Article  CAS  PubMed  Google Scholar 

  174. van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron https://doi.org/10.1016/j.neuron.2021.11.020 (2021).

    Article  PubMed  Google Scholar 

  175. Saha, T. et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 17, 98–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Levoux, J. et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 33, 283–299(2021).

    Article  CAS  PubMed  Google Scholar 

  177. Piquereau, J. et al. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front. Physiol. 4, 102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cai, Q., Gerwin, C. & Sheng, Z. H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol. 170, 959–969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ikuta, J. et al. Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem. Biophys. Res. Commun. 353, 127–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Fujita, T. et al. Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem. Biophys. Res. Commun. 361, 605–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Cho, K. I. et al. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8, 1722–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Zhao, Y. et al. Metaxins are core components of mitochondrial transport adaptor complexes. Nat. Commun. 12, 83 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lyons, D. A., Naylor, S. G., Mercurio, S., Dominguez, C. & Talbot, W. S. KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg–Shprintzen syndrome. Development 135, 599–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Song, J., Herrmann, J. M. & Becker, T. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 22, 54–70 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Schuler, M.-H. & Hughes, A. L. SPOTting stress at the mitochondrial outer membrane. Mol. Cell 82, 1086–1088 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Vanhauwaert, R., Bharat, V. & Wang, X. Surveillance and transportation of mitochondria in neurons. Curr. Opin. Neurobiol. 57, 87–93 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Pekkurnaz and Wang lab members for discussions. We apologize to colleagues whose work could not be cited owing to space constraints. We thank the following funders: National Institutes of Health (RO1NS089583 and RO1GM143258 to X. W. and R35GM128823 to G. P.), the Parkinson’s Foundation (PF-JFA-1888 to G. P.) and the Chan Zuckerberg Initiative (2020-222005 to G. P.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived the idea and wrote the paper.

Corresponding authors

Correspondence to Gulcin Pekkurnaz or Xinnan Wang.

Ethics declarations

Competing interests

X. W. is a co-founder, adviser, and shareholder of AcureX Therapeutics, and a shareholder of Mitokinin Inc. Both companies develop therapeutics that target mitochondria for neurodegenerative diseases. G. P. declares no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Evandro Fang and the other, anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: Alfredo Giménez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekkurnaz, G., Wang, X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 4, 802–812 (2022). https://doi.org/10.1038/s42255-022-00594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00594-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing