Skip to main content
Log in

Study on Laser Welding Process, Microstructure and Properties of AZ31B Magnesium Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

AZ31B magnesium alloy sheets of 4.0 mm in thickness were successfully butt-welded by using laser beam welding (LBW). The effects of laser beam welding parameters such as laser power, welding speed and focal position on microstructure revolution and mechanical properties of AZ31B magnesium alloy were investigated. The results showed that the welded joints fabricated using a laser power of 2.5 kW, welding speed of 30 mm/s and focal position of + 2 mm presented optimized macroscopic morphology and best tensile properties compared with the other joints. The formation of fine grains in weld zone and uniformly distributed fine precipitates were the main reasons for superior tensile properties of these joints. In addition, there was only α-Mg phase and no β-Mg17Al12 was observed in the weld zone. The spherical particles in the weld zone were α-Mg segregation rich in Al and Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Assar A, Nami B (2021) Weld World 65:1131.

    Article  CAS  Google Scholar 

  2. Hirsch J, Al-Samman T (2013) Acta Mater 61:818.

    Article  CAS  Google Scholar 

  3. Subravel V, Padmanaban G, Balasubramanian V (2015) T Indian I Metals 68:353.

    Article  CAS  Google Scholar 

  4. Du CP, Xu DF (2013) Adv Mater Res 734–737:2244.

    Article  Google Scholar 

  5. He BL, Xiong L, Yu YX (2016) China Weld 25:1.

    Google Scholar 

  6. Rethmeier M, Kleinpeter B, Wohlfahrt H (2004) Weld World 48:28.

    Article  CAS  Google Scholar 

  7. Li F, Guan RG, Tie D (2020) China Eng Sci 22:76.

    Article  Google Scholar 

  8. Alexandre Z, Delphine VR (2019) J Vac Sci Technol 37:1.

    Google Scholar 

  9. Liu DB, Xu GQ (2019) Bioelectrochemistry 129:106.

    Article  CAS  Google Scholar 

  10. Guo YF, Tang XZ, Zu Q (2021) Acta Solidica Sinica 02:1.

    Google Scholar 

  11. Cole GS, Sherman AM (1995) Mater Charact 35:3.

    Article  CAS  Google Scholar 

  12. Satonaka S, Iwamoto C, Murakami GI (2012) Weld World 56:44.

    Article  CAS  Google Scholar 

  13. Wang HF, Liu SR, Ge XL (2020) Key Eng Mater 866:54.

    Article  Google Scholar 

  14. Bass LS, Treat MR (2010) Lasers Sur Med 17:315.

    Article  Google Scholar 

  15. Hong KM, Shin YC (2017) J Mater Process Tech 245:46.

    Article  CAS  Google Scholar 

  16. Cao X, Jahazi M, Immarigeon JP (2006) J Mater Process Tech 171:188.

    Article  CAS  Google Scholar 

  17. Zhang LJ, Guo Q, Lan M (2020) J Phys 1578:012197.

    CAS  Google Scholar 

  18. Rajesh TR (2020) Mater Sci Eng 912:0322053.

    Google Scholar 

  19. Zhang XB, Cao ZY (2019) Int J Adv Manuf Tech 104:3053.

    Article  Google Scholar 

  20. Wang JF, Liu LM, Song G (2004) J Weld 18:129.

    Google Scholar 

  21. Yan HG, Zhao Q, Chen P (2015) T Nonferr Metal Soc 25:389.

    Article  CAS  Google Scholar 

  22. Cui ZQ, Cheng LX, Si E (2014) China Weld 23:2962.

    Google Scholar 

  23. Subravel V, Padmanaban G, Balasubramanian V (2014) T Nonferr Metal Soc 24:2776.

    Article  CAS  Google Scholar 

  24. Zhang H (2020) Process Technol 48:61.

    CAS  Google Scholar 

  25. Yang JN, Zhang LJ, Ning J (2018) Int J Refract Met H 73:58

    Article  CAS  Google Scholar 

  26. Quan YJ (2008) Mater Charact 59:1491.

    Article  CAS  Google Scholar 

  27. Wang Y, Wang DT, Hou XD (1998) Light Alloy Process Technol 1:39.

    Google Scholar 

  28. Sobolev SL (2012) T Nonferr Metal Soc 22:2749.

    Article  CAS  Google Scholar 

  29. Wang HY, Li ZJ, Zhang YH (2006) China Weld 3:29.

    Google Scholar 

  30. Saowadee N, Agersted K, Bowen JR (2017) J Micros 2:200.

    Article  Google Scholar 

  31. Liu LM, Song G, Wang JF et al. (2004) T Nonferr Metal Soc 03:550.

    Google Scholar 

  32. Li J, Wang WX, Zhang L (2011) J Mater Sci Eng 29:246.

    Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant No. 52005228) and Natural Science Foundation of Jiangsu Province (BK 20180984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyong Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

The content in this article does not violate the ethics.

Consent to Participate

All authors in this article have informed consent to participate in this study.

Consent for Publication

All authors and their institutions agree to publish this article in Transactions of the Indian Institute of Metals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qian, P., Qiao, Y. et al. Study on Laser Welding Process, Microstructure and Properties of AZ31B Magnesium Alloy. Trans Indian Inst Met 75, 2905–2912 (2022). https://doi.org/10.1007/s12666-022-02659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02659-6

Keywords

Navigation