Skip to main content
Log in

Analysis of the capabilities of the spectral element method in solving physically and geometrically nonlinear problems of mechanics using the CAE Fidesys package

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The article considers the problems of the formation of a neck in a sample of complex shape and Lüders slip bands in a square plate with a central circular hole in a plane-deformed state in finite deformations, taking into account the perfectly plastic flow. The statement of tasks is presented. Due to the symmetry, quarters of the models were considered. Numerical results were obtained in the CAE Fidesys package using the finite element method for the first and second orders, as well as for the spectral element method: for seven orders for the necking problem and the third-order elements for the Lüders slip bands problem. Based on the results obtained, the analysis of the capabilities of the spectral element method relative to the finite element method is carried out. The results of the conducted research can be useful when deciding on the use of the spectral element method in industrial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 2nd edn. McGraw-Hill Book Co., New York- Toronto-London (1951). https://doi.org/10.1017/S036839310012471X

    Book  MATH  Google Scholar 

  2. Sedov, L.I.: Introduction to the Mechanics of a Continuous Medium, 2nd edn. Addison-Wesley Publishing Co, California (1965)

    MATH  Google Scholar 

  3. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Butterworth-Heinemann, Oxford, United Kingdom (2013). https://doi.org/10.1016/C2009-0-24909-9

    Book  MATH  Google Scholar 

  4. Fish, J., Belutschko, T.: A First Course in Finite Elements. John Wiley & Sons Ltd, New York (2007). https://doi.org/10.1002/9780470510858.index

    Book  Google Scholar 

  5. Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J. (1973). https://doi.org/10.1002/zamm.19750551121

    Book  MATH  Google Scholar 

  6. Zingerman, K.M., Vershinin, A.V., Levin, V.A.: Comparison of numerically-analytical and finite-element solutions of the Lame problem for nonlinear-elastic cylinder under large strains. J. Phys. Conf. Ser. 1158(4), 042045 (2019). https://doi.org/10.1088/1742-6596/1158/4/042045

    Article  Google Scholar 

  7. Zingerman, K.M., Vershinin, A.V., Levin, V.A.: An approach for verification of finite-element analysis in nonlinear elasticity under large strains. IOP Conf. Ser. Mater. Sci. Eng. 158, 012104 (2016). https://doi.org/10.1088/1757-899x/158/1/012104

    Article  Google Scholar 

  8. Levin, V.A., Vershinin, A.V., Zingerman, K.M.: Numerical analysis of propagation of nonlinear waves in prestressed solids. Modern Appl. Sci. 10(4), 158–167 (2016). https://doi.org/10.5539/mas.v10n4p158

    Article  Google Scholar 

  9. Yakovlev, M.Y., Lukyanchikov, I.S., Levin, V.A., Vershinin, A.V., Zingerman, K.M.: Calculation of the effective properties of the prestressed nonlinear elastic heterogeneous materials under finite strains based on the solutions of the boundary value problems using finite element method. J. Phys. Conf. Ser. 1158(4), 042037 (2019). https://doi.org/10.1088/1742-6596/1158/4/042037

    Article  Google Scholar 

  10. Vdovichenko, I.I., Yakovlev, M.Y., Verchinin, A.V., Levin, V.A.: Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems. IOP Conf. Ser. Mater. Sci. Eng. 158(1), 012094 (2016). https://doi.org/10.1088/1757-899X/158/1/012094

    Article  Google Scholar 

  11. Rajagopal, K.R., Wineman, A.S.: A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int. J. Plasticity. 8(4), 385–395 (1992). https://doi.org/10.1016/0749-6419(92)90056-I

    Article  MATH  Google Scholar 

  12. Misra, A., Placidi, L., dell’Isola, F., et al.: Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics. Z. Angew. Math. Phys. 72(4), 1–21 (2021). https://doi.org/10.1007/s00033-021-01587-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Javili, A., Steinmann, P., dell’Isola, F.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids. 61(12), 2381–2401 (2013). https://doi.org/10.1016/j.jmps.2013.06.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Quiligotti, S., Maugin, G., dell’Isola, F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mechanica. 160, 45–60 (2003). https://doi.org/10.1007/s00707-002-0968-z

    Article  MATH  Google Scholar 

  15. Levin, V.A., Podladchikov, Y.Y., Zingerman, K.M.: An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations. Eur. J. Mech. A/Solids. 90, 104345 (2021). https://doi.org/10.1016/j.euromechsol.2021.104345

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Barchiesi, E., Eugster, S.R., dell’Isola, F., Hild, F.: Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Math. Mech. Solids. 25(3), 739–767 (2019). https://doi.org/10.1177/1081286519891228

    Article  MathSciNet  MATH  Google Scholar 

  17. Vershinin, A.V., Levin, V.A., Zingerman, K.M., Sboychakov, A.M., Yakovlev, M.Y.: Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for. Adv. Eng. Softw. 86, 80–84 (2015). https://doi.org/10.1016/j.advengsoft.2015.04.007

    Article  Google Scholar 

  18. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics/Die Nicht-Linearen Feldtheorien der Mechanik. Springer-Verlag, Berlin (1965). https://doi.org/10.1007/978-3-642-46015-9

    Book  Google Scholar 

  19. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  20. Vershinin, A.V., Levin, V.A., Kukushkin, A.V., Konovalov, D.A.: Structural analysis of assemblies using non-conformal spectral element method. IOP Conf. Ser. Mater. Sci. Eng. 747, 012033 (2020). https://doi.org/10.1088/1757-899x/747/1/012033

    Article  Google Scholar 

  21. Orel, B., Perne, A.: Chebyshev-Fourier spectral methods for nonperiodic boundary value problems. J. Appl. Math. (2014). https://doi.org/10.1155/2014/572694

    Article  MathSciNet  MATH  Google Scholar 

  22. Payette, G.: Spectral/hp finite element models for fluids and structures. Doctoral dissertation, Texas A &M University (2012). https://doi.org/10.1088/1969.1/ETD-TAMU-2012-05-10962

  23. Petrovskiy, K.A., Vershinin, A.V., Levin, V.A.: Application of spectral elements method to calculation of stress-strain state of anisotropic laminated shells. IOP Conf. Ser. Mater. Sci. Eng. 158, 012077 (2016). https://doi.org/10.1088/1757-899x/158/1/012077

    Article  Google Scholar 

  24. Karpenko, V.S., Vershinin, A.V., Levin, V.A., Zingerman, K.M.: Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package. IOP Conf. Ser. Mater. Sci. Eng. 158, 012049 (2016). https://doi.org/10.1088/1757-899x/158/1/012049

    Article  Google Scholar 

  25. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999). https://doi.org/10.1046/j.1365-246x.1999.00967.x

    Article  ADS  Google Scholar 

  26. Patera, A.T.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984). https://doi.org/10.1016/0021-9991(84)90128-1

    Article  ADS  MATH  Google Scholar 

  27. Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 3D and 3D geological structures. Bull. Seism. Soc. Am. 88(2), 368–392 (1998). https://doi.org/10.1785/BSSA0880020368

    Article  MATH  Google Scholar 

  28. Kachanov, L. M.: Foundations of the Theory of Plasticity. North-Holland, Amsterdam (1971). https://doi.org/10.1007/978-0-387-33599-5_3

  29. Nadai, A.: Plasticity: A Mechanics of the Plastic State of Matter. McGraw-Hill (1931)

  30. Kluth, G., Després, B.: Perfect plasticity and hyperelastic models for isotropic materials. Continuum Mech. Thermodyn. 20, 173 (2008). https://doi.org/10.1007/s00161-008-0078-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  32. Greco, L., Cuomo, M.: An implicit G1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff-Love shell assemblies. Comput. Methods Appl. Mech. Eng. 373, 113476 (2021). https://doi.org/10.1016/j.cma.2020.113476

    Article  ADS  MATH  Google Scholar 

  33. Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 356, 354–386 (2019). https://doi.org/10.1016/j.cma.2019.07.026

    Article  ADS  MATH  Google Scholar 

  34. Yildizdag, M.E., Ardic, I.T., Ergin, A.: An isogeometric FE-BE method to investigate fluid-structure interaction effects for an elastic cylindrical shell vibrating near a free surface. Ocean Eng. 251, 111065 (2022). https://doi.org/10.1016/j.oceaneng.2022.111065

    Article  Google Scholar 

  35. Zhao, Y., Gu, Y., Guo, Y.: Plasticity and deformation mechanisms of Ultrafine-Grained Ti in Neching region revealed by digital image correlation technique. Nanomaterials 11(3), 574 (2021). https://doi.org/10.3390/nano11030574

    Article  Google Scholar 

  36. Hill, R.: On discontinuous plastic states, with special reference to a localized necking in thin sheets. J. Mech. Phys. Solids. 1, 9–30 (1952). https://doi.org/10.1016/0022-5096(52)90003-3

    Article  ADS  MathSciNet  Google Scholar 

  37. Lubkova, E.Y., Morozov, E.M., Osintsev, A.V., Plotnikov, A.S.: On the location of a neck formation during the tension of cylindrical specimens. Lett. Mater. (2017). https://doi.org/10.22226/2410-3535-2017-3-260-265

    Article  Google Scholar 

  38. Levin, V.A., Zingerman, K.M., Vershinin, A.V.: Geomechanical modelling of fracture propagation under finite strain. Prefracture Zones. Seism. Technol. 11(4), 1–11 (2014). https://doi.org/10.3997/2405-7495.2015102

    Article  Google Scholar 

  39. Battista, A., Della Corte, A., dell’Isola, F., et al.: Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams. Z. Angew. Math. Phys. 69(3), 52 (2018). https://doi.org/10.1007/s00033-018-0946-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, J., Lu, C., Wu, B., Li, J., Li, H., Lu, Y., Gao, Q.: Innovative analysis of Luders band behavior in X80 pipeline steel. Mater. Sci. Eng. A. 683, 123–128 (2017). https://doi.org/10.1016/j.msea.2016.12.008

    Article  Google Scholar 

  41. Mazière, M., Forest, S.: Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation. Continuum Mech. Thermodyn. 27, 83–104 (2015). https://doi.org/10.1007/s00161-013-0331-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhang, Y., Ding, H.: Ultrafine also can be ductile: On the essence of Luders band elongation in ultrafine-grained medium manganese steel. Mater. Sci. Eng. A. 733, 220–223 (2018). https://doi.org/10.1016/j.msea.2018.07.052

    Article  Google Scholar 

  43. Contrafatto, L., Cuomo, M.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. Int. J. Numer. Methods Eng. 63(8), 1089–1125 (2005). https://doi.org/10.1002/nme.1235

    Article  MathSciNet  MATH  Google Scholar 

  44. Kukushkin, A.V., Konovalov, D.A., Vershinin, A.V., Levin, V.A.: Numerical simulation in CAE Fidesys of bonded contact problems on non-conformal meshes. J. Phys. Conf. Ser. 1158(2), 032022 (2019). https://doi.org/10.1088/1742-6596/1158/3/032022

    Article  Google Scholar 

  45. CAE Fidesys: User Guide version 4.1. https://www.cae-fidesys.com/documentation/ (2021). Accessed 25 January 2022

  46. Konovalov, D., Vershinin, A., Zingerman, K., Levin, V.: The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes. Modell. Simul. Eng. (2017). https://doi.org/10.1155/2017/1797561

    Article  Google Scholar 

  47. Bernardi, C., Debit, N., Maday, Y.: Coupling finite element and spectral methods. Math. Comput. 54(189), 21–39 (1990). https://doi.org/10.1090/S0025-5718-1990-0995205-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Giorgio, I., De Angelo, M., Turco, E., Misra, A.: A Biot-Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Continuum Mech. Thermodyn. 32(5), 1357–1369 (2020). https://doi.org/10.1007/s00161-019-00848-1

    Article  ADS  MathSciNet  Google Scholar 

  49. Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Continuum Mech. Thermodyn. 33(4), 1063–1082 (2021). https://doi.org/10.1007/s00161-020-00955-4

    Article  ADS  MathSciNet  Google Scholar 

  50. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N. L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016). https://hal.archives-ouvertes.fr/hal-01378498

  51. Levin, V.A., Zubov, L.M., Zingerman, K.M.: Large bending strains in an orthotropic beam with a preliminarily stretched or compressed layer: Exact solution. Doklady Phys. 61(8), 407–411 (2016). https://doi.org/10.1134/S1028335816080127

    Article  ADS  Google Scholar 

  52. Levin, V.A., Zingerman, K.M., Krapivin, K.Y., Ryabova, O.A., Kukushkin, A.V.: A Model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 161(2), 191–204 (2019). https://doi.org/10.26907/2541-7746.2019.2.191-204

    Article  Google Scholar 

  53. Babuška, I., Szabó, B.: Introduction to Finite Element Analysis: Formulation, Verification and Validation. John Wiley & Sons Ltd, New York (2011). https://doi.org/10.1002/9781119993834

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor of Lomonosov Moscow State University Vladimir Levin for the problem statement and constant attention to this work.

Funding

The research for this article was performed in Lomonosov Moscow State University and was financially supported by the Ministry of Education and Science of the Russian Federation under the agreement No 075-15-2019-1890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozlov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.V., Komolova, E.D., Kartsev, M.A. et al. Analysis of the capabilities of the spectral element method in solving physically and geometrically nonlinear problems of mechanics using the CAE Fidesys package. Continuum Mech. Thermodyn. 35, 1263–1273 (2023). https://doi.org/10.1007/s00161-022-01121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01121-8

Keywords

Navigation