Skip to main content
Log in

Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Emulsion systems are widely applied in agriculture, food, cosmetic, pharmaceutical and biomedical industries. Ultrasound has attracted much attention in emulsion preparation, especially for nanoemulsion, due to its advantages of being eco-friendly, cost-effective and energy-efficient. This review provides an overview for readers to the area of ultrasonic emulsification technology. It briefly introduces and summarizes knowledge of ultrasonic emulsification, including emulsion characteristics, acoustic cavitation, emulsification mechanism, ultrasonic devices and applications. The combination of microfluidics and ultrasound is highlighted with huge advantages in controlling cavitation phenomena and emulsification intensification. A novel scale of C0.6/μD0.33EV is proposed to be able to compare the energy efficiency of emulsion preparation in different devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta A, Eral H B, Hatton T A, Doyle P S. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12(11): 2826–2841

    Article  CAS  Google Scholar 

  2. Partheniadis I, Shah R R, Nikolakakis I. Application of ultrasonics for nanosizing drugs and drug formulations. Journal of Dispersion Science and Technology, 2021, https://doi.org/10.1080/01932691.2021.1878035

  3. Wilson R J, Li Y, Yang G, Zhao C X. Nanoemulsions for drug delivery. Particuology, 2021, 64: 85–97

    Article  Google Scholar 

  4. Leong T S, Martin G J, Ashokkumar M. Ultrasonic encapsulation—a review. Ultrasonics Sonochemistry, 2017, 35: 605–614

    Article  CAS  Google Scholar 

  5. Taha A, Ahmed E, Ismaiel A, Ashokkumar M, Xu X, Pan S, Hu H. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology, 2020, 105: 363–377

    Article  CAS  Google Scholar 

  6. Modarres-Gheisari S M M, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification—a review. Ultrasonics Sonochemistry, 2019, 52: 88–105

    Article  CAS  Google Scholar 

  7. Leong T, Wooster T, Kentish S, Ashokkumar M. Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 2009, 16(6): 721–727

    Article  CAS  Google Scholar 

  8. Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. International Journal of Food Properties, 2006, 9(3): 475–485

    Article  Google Scholar 

  9. Periasamy V S, Athinarayanan J, Alshatwi A A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 2016, 31: 449–455

    Article  CAS  Google Scholar 

  10. Kentish S, Wooster T, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 2008, 9(2): 170–175

    Article  CAS  Google Scholar 

  11. Peshkovsky A S, Bystryak S. Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: process scale-up. Chemical Engineering and Processing, 2014, 82:132–136

    Article  CAS  Google Scholar 

  12. Agrawal N, Maddikeri G L, Pandit A B. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrasonics Sonochemistry, 2017, 36: 367–374

    Article  CAS  Google Scholar 

  13. Gaikwad S G, Pandit A B. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 2008, 15(4): 554–563

    Article  CAS  Google Scholar 

  14. Sivakumar M, Tang S Y, Tan K W. Cavitation technology—a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 2014, 21(6): 2069–2083

    Article  CAS  Google Scholar 

  15. Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 2013, 20(1): 338–344

    Article  CAS  Google Scholar 

  16. Abbas S, Hayat K, Karangwa E, Bashari M, Zhang X. An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 2013, 5(3): 139–157

    Article  CAS  Google Scholar 

  17. Awad T, Moharram H, Shaltout O, Asker D, Youssef M. Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International, 2012, 48(2): 410–427

    Article  CAS  Google Scholar 

  18. Akdeniz V, Akalin A S. New approach for yoghurt and ice cream production: high-intensity ultrasound. Trends in Food Science & Technology, 2019, 86: 392–398

    Article  CAS  Google Scholar 

  19. Saani S M, Abdolalizadeh J, Heris S Z. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrasonics Sonochemistry, 2019, 55: 86–95

    Article  Google Scholar 

  20. Rao J, McClements D J. Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion & nanoemulsion formation. Food Hydrocolloids, 2012, 26(1): 268–276

    Article  CAS  Google Scholar 

  21. Fryd M M, Mason T G. Advanced nanoemulsions. Annual Review of Physical Chemistry, 2012, 63(1): 493–518

    Article  CAS  Google Scholar 

  22. Kong M, Chen X G, Kweon D K, Park H J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydrate Polymers, 2011, 86(2): 837–843

    Article  CAS  Google Scholar 

  23. Anton N, Benoit J P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of Controlled Release, 2008, 128(3): 185–199

    Article  CAS  Google Scholar 

  24. McClements D J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6): 1719–1729

    Article  CAS  Google Scholar 

  25. Davis S, Round H, Purewal T. Ostwald ripening and the stability of emulsion systems: an explanation for the effect of an added third component. Journal of Colloid and Interface Science, 1981, 80(2): 508–511

    Article  CAS  Google Scholar 

  26. Anton N, Vandamme T F. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 2011, 28(5): 978–985

    Article  CAS  Google Scholar 

  27. Thomson W. 4. On the equilibrium of vapour at a curved surface of liquid. Proceedings of the Royal Society of Edinburgh, 1872, 7: 63–68

    Article  Google Scholar 

  28. Yotsuyanagi T, Higuchi W I, Ghanem A H. Theoretical treatment of diffusional transport into and through an oil-water emulsion with an interfacial barrier at the oil-water interface. Journal of Pharmaceutical Sciences, 1973, 62(1): 40–43

    Article  CAS  Google Scholar 

  29. Davies J. Drop sizes of emulsions related to turbulent energy dissipation rates. Chemical Engineering Science, 1985, 40(5): 839–842

    Article  CAS  Google Scholar 

  30. Forgiarini A, Esquena J, Gonzalez C, Solans C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir, 2001, 17(7): 2076–2083

    Article  CAS  Google Scholar 

  31. Davies J. A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chemical Engineering Science, 1987, 42(7): 1671–1676

    Article  CAS  Google Scholar 

  32. Taylor G I. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1934, 146(858): 501–523

    CAS  Google Scholar 

  33. Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal. American Institute of Chemical Engineers, 1955, 1(3): 289–295

    Article  CAS  Google Scholar 

  34. Gupta A, Eral H B, Hatton T A, Doyle P S. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter, 2016, 12(5): 1452–1458

    Article  CAS  Google Scholar 

  35. Calabrese R V, Chang T, Dang P. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE Journal, 1986, 32(4): 657–666

    Article  CAS  Google Scholar 

  36. Abismaïl B, Canselier J, Wilhelm A, Delmas H, Gourdon C. Emulsification processes: on-line study by multiple light scattering measurements. Ultrasonics Sonochemistry, 2000, 7(4): 187–192

    Article  Google Scholar 

  37. Rivas D F, Cintas P, Gardeniers H J. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sonoreactors. Chemical Communications (Cambridge), 2012, 48(89): 10935–10947

    Article  Google Scholar 

  38. Ashokkumar M, Lee J, Kentish S, Grieser F. Bubbles in an acoustic field: an overview. Ultrasonics Sonochemistry, 2007, 14(4): 470–475

    Article  CAS  Google Scholar 

  39. Yasui K. Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustical Society of America, 2002, 112(4): 1405–1413

    Article  CAS  Google Scholar 

  40. Thompson L H, Doraiswamy L. Sonochemistry: science and engineering. Industrial & Engineering Chemistry Research, 1999, 38(4): 1215–1249

    Article  CAS  Google Scholar 

  41. Mettin R. From a single bubble to bubble structures in acoustic cavitation. In: Oscillations, Waves and Interactions. Göttingen: University of Göttingen, 2007

    Google Scholar 

  42. Tho P, Manasseh R, Ooi A. Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 2007, 576: 191–233

    Article  Google Scholar 

  43. Zhao S, Yao C, Zhang Q, Chen G, Yuan Q. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: the effects of channel dimension, solvent properties and temperature. Chemical Engineering Journal, 2019, 374: 68–78

    Article  CAS  Google Scholar 

  44. Zhao S, Yao C, Dong Z, Chen G, Yuan Q. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue. Particuology, 2020, 48: 88–99

    Article  CAS  Google Scholar 

  45. Leighton T. The Acoustic Bubble. Cambridge, Massachusetts: Academic Press INC, 1997

    Google Scholar 

  46. Faber T E. Fluid Dynamics for Physicists. London: Cambridge University Press, 1995

    Book  Google Scholar 

  47. Offin D G, Birkin P R, Leighton T G. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment. Physical Chemistry Chemical Physics, 2014, 16(10): 4982–4989

    Article  CAS  Google Scholar 

  48. Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chemical Engineering Science, 2018, 186: 122–134

    Article  CAS  Google Scholar 

  49. Longuet-Higgins M S. Resonance in nonlinear bubble oscillations. Journal of Fluid Mechanics, 1991, 224: 531–549

    Article  Google Scholar 

  50. Zholkovskij E K, Kovalchuk V I, Fainerman V B, Loglio G, Krägel J, Miller R, Zholob S A, Dukhin S S. Resonance behavior of oscillating bubbles. Journal of Colloid and Interface Science, 2000, 224(1): 47–55

    Article  CAS  Google Scholar 

  51. Minnaert M. XVI. On musical air-bubbles and the sounds of running water. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1933, 16(104): 235–248

    Article  Google Scholar 

  52. Wang C, Jalikop S V, Hilgenfeldt S. Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics, 2012, 6(1): 12801–1280111

    Article  Google Scholar 

  53. Dong Z, Zhao S, Zhang Y, Yao C, Yuan Q, Chen G. Mixing and residence time distribution in ultrasonic microreactors. AIChE Journal, 2017, 63(4): 1404–1418

    Article  CAS  Google Scholar 

  54. Wang C, Rallabandi B, Hilgenfeldt S. Frequency dependence and frequency control of microbubble streaming flows. Physics of Fluids, 2013, 25(2): 022002

    Article  Google Scholar 

  55. Colmenares J C, Chatel G. Sonochemistry. Berlin: Springer, 2016, 225: 254

    Google Scholar 

  56. Dong Z, Fernandez Rivas D, Kuhn S. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab on a Chip, 2019, 19(2): 316–327

    Article  CAS  Google Scholar 

  57. Zhao S N, Yao C Q, Liu Z K, Zhang Q, Chen G W, Yuan Q. Process intensification of high viscosity extraction system in microreactor via ultrasound-driven microbubbles. CIESC Journal, 2020, 71(9): 4152–4160 (in Chinese)

    CAS  Google Scholar 

  58. Ahmed D, Mao X, Juluri B K, Huang T J. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and Nanofluidics, 2009, 7(5): 727–731

    Article  CAS  Google Scholar 

  59. Ahmed D, Mao X, Shi J, Juluri B K, Huang T J. A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 2009, 9(18): 2738–2741

    Article  CAS  Google Scholar 

  60. Huang P H, Zhao S, Bachman H, Nama N, Li Z, Chen C, Yang S, Wu M, Zhang S P, Huang T J. Acoustofluidic Synthesis of Particulate Nanomaterials. Advancement of Science, 2019, 6(19): 1900913

    CAS  Google Scholar 

  61. Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, Yuan Q. A high-power ultrasonic microreactor and its application in gas—liquid mass transfer intensification. Lab on a Chip, 2015, 15(4): 1145–1152

    Article  CAS  Google Scholar 

  62. Iida Y, Yasui K, Tuziuti T, Sivakumar M, Endo Y. Ultrasonic cavitation in microspace. Chemical Communications (Cambridge), 2004, 20: 2280–2281

    Article  Google Scholar 

  63. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. Bubble motions confined in a microspace observed with stroboscopic technique. Ultrasonics Sonochemistry, 2007, 14(5): 621–626

    Article  CAS  Google Scholar 

  64. Dong Z, Yao C, Zhang Y, Chen G, Yuan Q, Xu J. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(4): 1294–1307

    Article  CAS  Google Scholar 

  65. Xu F, Yang L, Liu Z, Chen G. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chemical Engineering Science, 2021, 235: 116477

    Article  CAS  Google Scholar 

  66. McCarogher K, Dong Z, Stephens D S, Leblebici M E, Mettin R, Kuhn S. Acoustic resonance and atomization for gas—liquid systems in microreactors. Ultrasonics Sonochemistry, 2021, 75: 105611

    Article  CAS  Google Scholar 

  67. Yang L, Xu F, Zhang Q, Liu Z, Chen G. Gas—liquid hydrodynamics and mass transfer in microreactors under ultrasonic oscillation. Chemical Engineering Journal, 2020, 397: 125411

    Article  CAS  Google Scholar 

  68. Li M, Fogler H. Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 1978, 88(3): 499–511

    Article  CAS  Google Scholar 

  69. Li M, Fogler H. Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 1978, 88(3): 513–528

    Article  CAS  Google Scholar 

  70. Cucheval A, Chow R. A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 2008, 15(5): 916–920

    Article  CAS  Google Scholar 

  71. Perdih T S, Zupanc M, Dular M. Revision of the mechanisms behind oil-water (O/W) emulsion preparation by ultrasound and cavitation. Ultrasonics Sonochemistry, 2019, 51: 298–304

    Article  Google Scholar 

  72. Yamamoto T, Komarov S V. Liquid jet directionality and droplet behavior during emulsification of two liquids due to acoustic cavitation. Ultrasonics Sonochemistry, 2020, 62: 104874

    Article  CAS  Google Scholar 

  73. Lauterborn W, Kurz T. Physics of bubble oscillations. Reports on Progress in Physics, 2010, 73(10): 106501

    Article  Google Scholar 

  74. Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998, 361: 75–116

    Article  CAS  Google Scholar 

  75. Yamamoto T, Matsutaka R, Komarov S V. High-speed imaging of ultrasonic emulsification using a water-gallium system. Ultrasonics Sonochemistry, 2021, 71: 105387

    Article  CAS  Google Scholar 

  76. Orthaber U, Zevnik J, Dular M. Cavitation bubble collapse in a vicinity of a liquid-liquid interface—basic research into emulsification process. Ultrasonics Sonochemistry, 2020, 68: 105224

    Article  CAS  Google Scholar 

  77. Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q. Liquid—liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(4): 1412–1423

    Article  CAS  Google Scholar 

  78. Nieves E, Vite G, Kozina A, Olguin L F. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow. Ultrasonics Sonochemistry, 2021, 74: 105556

    Article  CAS  Google Scholar 

  79. van Zwieten R, Verhaagen B, Schroën K, Rivas D F. Emulsification in novel ultrasonic cavitation intensifying bag reactors. Ultrasonics Sonochemistry, 2017, 36: 446–453

    Article  CAS  Google Scholar 

  80. Behrend O, Ax K, Schubert H. Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry, 2000, 7(2): 77–85

    Article  CAS  Google Scholar 

  81. Kanda T, Kiyama Y, Suzumori K. A nano emulsion generator using a microchannel and a bolt blamped type transducer. In: 2013 IEEE International Ultrasonics Symposium (IUS). New York: IEEE, 2013

    Book  Google Scholar 

  82. Kaci M, Meziani S, Arab-Tehrany E, Gillet G, Desjardins-Lavisse I, Desobry S. Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion. Ultrasonics Sonochemistry, 2014, 21(3): 1010–1017

    Article  CAS  Google Scholar 

  83. Hübner S, Kressirer S, Kralisch D, Bludszuweit-Philipp C, Lukow K, Jänich I, Schilling A, Hieronymus H, Liebner C, Jähnisch K. Ultrasound and microstructures—a promising combination? ChemSusChem, 2012, 5(2): 279–288

    Article  Google Scholar 

  84. Freitas S, Hielscher G, Merkle H P, Gander B. Continuous contact-and contamination-free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrasonics Sonochemistry, 2006, 13(1): 76–85

    Article  CAS  Google Scholar 

  85. Aljbour S, Yamada H, Tagawa T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chemical Engineering and Processing, 2009, 48(6): 1167–1172

    Article  CAS  Google Scholar 

  86. Dong Z, Udepurkar A P, Kuhn S. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrasonics Sonochemistry, 2020, 60: 104800

    Article  CAS  Google Scholar 

  87. John J J, Van Gerven T. Effect of ultrasound on parallel flow in a microchannel. Chemical Engineering and Processing, 2021, 171: 108465

    Article  Google Scholar 

  88. Dong Z, Zondag S D, Schmid M, Wen Z, Noël T. A meso-scale ultrasonic milli-reactor enables gas—liquid—solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428: 130968

    Article  CAS  Google Scholar 

  89. Lenshof A, Evander M, Laurell T, Nilsson J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab on a Chip, 2012, 12(4): 684–695

    Article  CAS  Google Scholar 

  90. Peshkovsky S L, Peshkovsky A S. Shock-wave model of acoustic cavitation. Ultrasonics Sonochemistry, 2008, 15(4): 618–628

    Article  CAS  Google Scholar 

  91. Peshkovsky A S, Peshkovsky S L, Bystryak S. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chemical Engineering and Processing, 2013, 69: 77–82

    Article  CAS  Google Scholar 

  92. Ezeanowi N, Koiranen T. Effect of process parameters on a novel modular continuous crystallizer. In: Proceedings of the 2nd International Process Intensification Conference (IPIC2). Leuven: European Federation of Chemical Engineering, 2019

    Google Scholar 

  93. Delacour C, Stephens D S, Lutz C, Mettin R, Kuhn S. Design and characterization of a scaled-up ultrasonic flow reactor. Organic Process Research & Development, 2020, 24(10): 2085–2093

    Article  CAS  Google Scholar 

  94. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108: 303–318

    Article  Google Scholar 

  95. Gharibzahedi S M, Jafari S M. Fabrication of nanoemulsions by ultrasonication. In: Nanoemulsions. Amsterdam: Elsevier, 2018

    Google Scholar 

  96. Canselier J, Delmas H, Wilhelm A, Abismail B. Ultrasound emulsification—an overview. Journal of Dispersion Science and Technology, 2002, 23(1–3): 333–349

    Article  CAS  Google Scholar 

  97. Zhang Q, Dong Z, Zhao S, Liu Z, Chen G. Ultrasound-assisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency. Chemical Engineering Journal, 2021, 405: 126720

    Article  CAS  Google Scholar 

  98. Merouani S, Hamdaoui O, Rezgui Y, Guemini M. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles—theoretical study. Ultrasonics Sonochemistry, 2013, 20(3): 815–819

    Article  CAS  Google Scholar 

  99. Brotchie A, Grieser F, Ashokkumar M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Physical Review Letters, 2009, 102(8): 084302

    Article  Google Scholar 

  100. Pokhrel N, Vabbina P K, Pala N. Sonochemistry: science and engineering. Ultrasonics Sonochemistry, 2016, 29: 104–128

    Article  CAS  Google Scholar 

  101. Jafari S M, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 2007, 82(4): 478–488

    Article  Google Scholar 

  102. Higgins D M, Skauen D M. Influence of power on quality of emulsions prepared by ultrasound. Journal of Pharmaceutical Sciences, 1972, 61(10): 1567–1570

    Article  CAS  Google Scholar 

  103. Tang S Y, Manickam S, Wei T K, Nashiru B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 2012, 19(2): 330–345

    Article  CAS  Google Scholar 

  104. Raso J, Manas P, Pagan R, Sala F J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 1999, 5(4): 157–162

    Article  CAS  Google Scholar 

  105. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization of lemongrass essential oil—alginate nanoemulsions: effect of ultrasound processing parameters. Food and Bioprocess Technology, 2013, 6(9): 2439–2446

    Article  Google Scholar 

  106. Salvia-Trujillo L, Rojas-Graü M A, Soliva-Fortuny R, Martín-Belloso O. Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 2014, 37: 292–297

    Article  CAS  Google Scholar 

  107. Tang S Y, Shridharan P, Sivakumar M. Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrasonics Sonochemistry, 2013, 20(1): 485–497

    Article  CAS  Google Scholar 

  108. Tal-Figiel B. The formation of stable w/o, o/w, w/o/w cosmetic emulsions in an ultrasonic field. Chemical Engineering Research & Design, 2007, 85(5): 730–734

    Article  CAS  Google Scholar 

  109. Reddy S, Fogler H. Emulsion stability of acoustically formed emulsions. Journal of Physical Chemistry, 1980, 84(12): 1570–1575

    Article  CAS  Google Scholar 

  110. Nakabayashi K, Amemiya F, Fuchigami T, Machida K, Takeda S, Tamamitsu K, Atobe M. Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications (Cambridge), 2011, 47(20): 5765–5767

    Article  CAS  Google Scholar 

  111. Kamogawa K, Okudaira G, Matsumoto M, Sakai T, Sakai H, Abe M. Preparation of oleic acid/water emulsions in surfactant-free condition by sequential processing using midsonic—megasonic waves. Langmuir, 2004, 20(6): 2043–2047

    Article  CAS  Google Scholar 

  112. Nakabayashi K, Fuchigami T, Atobe M. Tandem acoustic emulsion, an effective tool for the electrosynthesis of highly transparent and conductive polymer films. Electrochimica Acta, 2013, 110: 593–598

    Article  CAS  Google Scholar 

  113. Jafari S M, Assadpoor E, He Y, Bhandari B. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 2008, 22(7): 1191–1202

    Article  CAS  Google Scholar 

  114. Vankova N, Tcholakova S, Denkov N D, Ivanov I B, Vulchev V D, Danner T. Emulsification in turbulent flow: 1. Mean and maximum drop diameters in inertial and viscous regimes. Journal of Colloid and Interface Science, 2007, 312(2): 363–380

    Article  CAS  Google Scholar 

  115. Walstra P. Principles of emulsion formation. Chemical Engineering Science, 1993, 48(2): 333–349

    Article  CAS  Google Scholar 

  116. Li W, Leong T S, Ashokkumar M, Martin G J. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics, 2018, 20(1): 86–96

    Article  Google Scholar 

  117. Yap B H, Dumsday G J, Scales P J, Martin G J. Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresource Technology, 2015, 184: 280–285

    Article  CAS  Google Scholar 

  118. Behrend O, Schubert H. Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics Sonochemistry, 2001, 8(3): 271–276

    Article  CAS  Google Scholar 

  119. John J J, Kuhn S, Braeken L, Van Gerven T. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chemical Engineering and Processing, 2017, 113: 35–41

    Article  CAS  Google Scholar 

  120. Dasgupta N, Ranjan S, Gandhi M. Nanoemulsions in food: market demand. Environmental Chemistry Letters, 2019, 17(2): 1003–1009

    Article  CAS  Google Scholar 

  121. McClements D J, Bai L, Chung C. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology, 2017, 8(1): 205–236

    Article  Google Scholar 

  122. Sui X, Bi S, Qi B, Wang Z, Zhang M, Li Y, Jiang L. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63: 727–734

    Article  CAS  Google Scholar 

  123. Shanmugam A, Ashokkumar M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—physicochemical characterization. Food Hydrocolloids, 2014, 39: 151–162

    Article  CAS  Google Scholar 

  124. Taha A, Ahmed E, Hu T, Xu X, Pan S, Hu H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58: 104627

    Article  CAS  Google Scholar 

  125. Jambrak A R, Herceg Z, Šubarić D, Babić J, Brnčić M, Brnčić S R, Bosiljkov T, Čvek D, Tripalo B, Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 2010, 79(1): 91–100

    Article  CAS  Google Scholar 

  126. Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 2013, 20(1): 222–231

    Article  CAS  Google Scholar 

  127. Sutradhar K B, Amin M L. Nanoemulsions: increasing possibilities in drug delivery. European Journal of Nanomedicine, 2013, 5(2): 97–110

    Article  Google Scholar 

  128. Jiang W, Kim B Y, Rutka J T, Chan W C. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 2008, 3(3): 145–150

    Article  CAS  Google Scholar 

  129. Foroozandeh P, Aziz A A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13(1): 1–12

    Article  CAS  Google Scholar 

  130. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2): 57

    Article  Google Scholar 

  131. Diril M, Karasulu Y, Toskas M, Nikolakakis I. Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets. Processes, 2019, 7(6): 365

    Article  CAS  Google Scholar 

  132. de Araújo S C, de Mattos A C A, Teixeira H F, Coelho P M Z, Nelson D L, de Oliveira M C. Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 2007, 337(1–2): 307–315

    Article  Google Scholar 

  133. Li F, Wang T, He H B, Tang X. The properties of bufadienolides-loaded nano-emulsion and submicro-emulsion during lyophilization. International Journal of Pharmaceutics, 2008, 349(1–2): 291–299

    Article  CAS  Google Scholar 

  134. Doh H J, Jung Y, Balakrishnan P, Cho H J, Kim D D. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces B: Biointerfaces, 2013, 101: 475–480

    Article  CAS  Google Scholar 

  135. Verma P, Meher J G, Asthana S, Pawar V K, Chaurasia M, Chourasia M K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Delivery, 2016, 23(2): 479–488

    Article  CAS  Google Scholar 

  136. Suslick K S, Price G J. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29(1): 295–326

    Article  CAS  Google Scholar 

  137. Teo B M, Prescott S W, Ashokkumar M, Grieser F. Ultrasound initiated miniemulsion polymerization of methacrylate monomers. Ultrasonics Sonochemistry, 2008, 15(1): 89–94

    Article  CAS  Google Scholar 

  138. John J J, Kuhn S, Braeken L, Van Gerven T. Ultrasound assisted liquid-liquid extraction in microchannels—a direct contact method. Chemical Engineering and Processing, 2016, 102: 37–46

    Article  CAS  Google Scholar 

  139. Sonawane S H, Teo B M, Brotchie A, Grieser F, Ashokkumar M. Sonochemical synthesis of ZnO encapsulated functional nanolatex and its anticorrosive performance. Industrial & Engineering Chemistry Research, 2010, 49(5): 2200–2205

    Article  CAS  Google Scholar 

  140. Price G J. Ultrasonically enhanced polymer synthesis. Ultrasonics Sonochemistry, 1996, 3(3): S229–S238

    Article  CAS  Google Scholar 

  141. Liu H, Begley T. Comprehensive Natural Products. 3rd ed. Asmterdan: Elsevier, 2020, 263: 236

    Google Scholar 

  142. Agarwal C, Máthé K, Hofmann T, Csóka L. Ultrasound-assisted extraction of cannabinoids from Cannabis sativa L. optimized by response surface methodology. Journal of Food Science, 2018, 83(3): 700–710

    Article  CAS  Google Scholar 

  143. McClements D J, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51(4): 285–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge gratefully the financial supports for this project from the National Natural Science Foundation of China (Grant Nos. 21991103 and 92034303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Zhao, S., Liu, L. et al. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front. Chem. Sci. Eng. 16, 1560–1583 (2022). https://doi.org/10.1007/s11705-022-2160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2160-4

Keywords

Navigation