Skip to main content
Log in

Unsupervised real-time evaluation of optical coherence tomography (OCT) images of solid oral dosage forms

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Automatic segmentation of images, which is now feasible through an increase in available computing power, has become an important challenge in many fields. A key technology for obtaining such images is optical coherence tomography (OCT), which is already widely applied in ophthalmology and more recently in the pharmaceutical industry, as a method for real-time monitoring of solid oral dosage form coating processes. Accurately detecting the boundaries of objects in OCT images is required for a meaningful automatic evaluation. During in-line monitoring, the evaluation time for each image is a crucial factor to enable the real-time analysis of large amounts of data. The segmentation of images has previously been achieved via machine learning methods, which generally require a large number of training examples. This work aims to overcome this limitation by employing unsupervised machine learning for the segmentation of OCT images of coated pharmaceutical tablets. An adapted clustering method was specifically developed to achieve the fast real-time detection of the coating layer’s boundaries in OCT-generated images. A newly developed parallel implementation of DBSCAN, that is well suited for image evaluation, makes it possible to use this novel method for real-time process analytical technology (PAT) applications. This approach has been shown to be significantly faster than so far established methods for segmenting similar OCT images. Furthermore, the image-specific parallelized DBSCAN algorithm has been shown to be around three times faster than other parallel implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nixon, M.S., Aguado, A.S.: Image processing. Featur. Extr. Image Process. Comput. Vis. 83–139, 2020 (2020). https://doi.org/10.1016/B978-0-12-814976-8.00003-8

    Article  Google Scholar 

  2. Acharya, T., Ray, A.K.: Image Processing: Principles and Applications. Wiley, Hoboken (2005)

    Book  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning Chris Bishop. Springer, New York (2004)

    Google Scholar 

  4. Brezinski, M.E.: Optical coherence tomography theory. Opt. Coherence Tomogr. 97–145, 2006 (2006). https://doi.org/10.1016/B978-012133570-0/50007-X

    Article  Google Scholar 

  5. Bezerra, H.G., Costa, M.A., Guagliumi, G., Rollins, A.M., Simon, D.I.: Intracoronary Optical Coherence Tomography: A Comprehensive Review: Clinical And Research Applications. JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009). https://doi.org/10.1016/J.JCIN.2009.06.019

    Article  Google Scholar 

  6. Donaldson, L., Margolin, E.: Visual fields and optical coherence tomography (OCT) in neuro-ophthalmology: structure-function correlation. J. Neurol. Sci. 429, 118064 (2021). https://doi.org/10.1016/J.JNS.2021.118064

    Article  Google Scholar 

  7. Rebolleda, G., et al.: OCT: new perspectives in neuro-ophthalmology. Saudi J. Ophthalmol. 29(1), 9–25 (2015). https://doi.org/10.1016/J.SJOPT.2014.09.016

    Article  Google Scholar 

  8. Markl, D., Wahl, P., Pichler, H., Sacher, S., Khinast, J.G.: Characterization of the coating and tablet core roughness by means of 3D optical coherence tomography. Int. J. Pharm. 536(1), 459–466 (2018). https://doi.org/10.1016/j.ijpharm.2017.12.023

    Article  Google Scholar 

  9. Markl, D., Hannesschläger, G., Sacher, S., Leitner, M., Khinast, J.G., Buchsbaum, A.: Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images. Meas. Sci. Technol. 26, 3 (2015). https://doi.org/10.1088/0957-0233/26/3/035701

    Article  Google Scholar 

  10. Markl, D., et al.: Calibration-free in-line monitoring of pellet coating processes via optical coherence tomography. Chem. Eng. Sci. 125, 200–208 (2015). https://doi.org/10.1016/J.CES.2014.05.049

    Article  Google Scholar 

  11. Sacher, S., Peter, A., Khinast, J.G.: Feasibility of In-line monitoring of critical coating quality attributes via OCT: thickness, variability, film homogeneity and roughness. Int. J. Pharm. X (2021). https://doi.org/10.1016/j.ijpx.2020.100067

    Article  Google Scholar 

  12. Sacher, S., Wolfgang, M., Peter, A., Stranzinger, S., Khinast, J.: “Real-time monitoring of pharmaceutical coatings by optical coherence tomography (OCT). Manuf. Chem. 96, 34 (2021)

    Google Scholar 

  13. Li, D., et al.: Parallel deep neural networks for endoscopic OCT image segmentation. Biomed. Opt. Express 10(3), 1126 (2019). https://doi.org/10.1364/boe.10.001126

    Article  Google Scholar 

  14. Sappa, L.B., et al.: RetFluidNet: retinal fluid segmentation for SD-OCT images using convolutional neural network. J. Dig. Imaging 34(3), 691–704 (2021). https://doi.org/10.1007/s10278-021-00459-w

    Article  MathSciNet  Google Scholar 

  15. Varga, L., et al.: Automatic segmentation of hyperreflective foci in OCT images. Comput. Methods Program. Biomed. 178, 91–103 (2019). https://doi.org/10.1016/J.CMPB.2019.06.019

    Article  Google Scholar 

  16. Wu, M., et al.: Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Comput. Methods Program. Biomed. 182, 105101 (2019). https://doi.org/10.1016/J.CMPB.2019.105101

    Article  Google Scholar 

  17. Koresh, H.J.D., Chacko, S., Periyanayagi, M.: A modified capsule network algorithm for oct corneal image segmentation. Pattern Recognit. Lett. 143, 104–112 (2021). https://doi.org/10.1016/J.PATREC.2021.01.005

    Article  Google Scholar 

  18. Wolfgang, M., Weißensteiner, M., Clarke, P., Hsiao, W.K., Khinast, J.G.: Deep convolutional neural networks: Outperforming established algorithms in the evaluation of industrial optical coherence tomography (OCT) images of pharmaceutical coatings. Int. J. Pharm. X (2020). https://doi.org/10.1016/j.ijpx.2020.100058

    Article  Google Scholar 

  19. Bhalerao, A., Wilson, R.: Unsupervised image segmentation combining region and boundary estimation. Image Vis. Comput. 19(6), 353–368 (2001). https://doi.org/10.1016/S0262-8856(00)00084-6

    Article  Google Scholar 

  20. Liu, X., et al.: Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 2019, 7 (2019). https://doi.org/10.1109/ACCESS.2018.2889321

    Article  Google Scholar 

  21. Wu, X., Bi, L., Fulham, M., Feng, D.D., Zhou, L., Kim, J.: Unsupervised brain tumor segmentation using a symmetric-driven adversarial network. Neurocomputing 455, 242–254 (2021). https://doi.org/10.1016/J.NEUCOM.2021.05.073

    Article  Google Scholar 

  22. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021). https://doi.org/10.1016/J.MEDIA.2020.101952

    Article  Google Scholar 

  23. Mvoulana, A., Kachouri, R., Akil, M.: Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Comput. Med. Imaging Graph. 77, 101643 (2019). https://doi.org/10.1016/J.COMPMEDIMAG.2019.101643

    Article  Google Scholar 

  24. Zhang, H., Essa, E., Xie, X.: Automatic vessel lumen segmentation in optical coherence tomography (OCT) images. Appl. Soft Comput. 88, 106042 (2020). https://doi.org/10.1016/J.ASOC.2019.106042

    Article  Google Scholar 

  25. Garcia-Marin, Y., Skrok, M., Siedlecki, D., Vincent, S.J., Collins, M.J., Alonso-Caneiro, D.: Segmentation of anterior segment boundaries in swept source OCT images. Biocybern. Biomed. Eng. 41(3), 903–915 (2021). https://doi.org/10.1016/J.BBE.2021.06.002

    Article  Google Scholar 

  26. Gueziri, H.E., McGuffin, M.J., Laporte, C.: A generalized graph reduction framework for interactive segmentation of large images. Comput. Vis. Image Underst. 150, 44–57 (2016). https://doi.org/10.1016/J.CVIU.2016.05.009

    Article  Google Scholar 

  27. Tian, K., Li, J., Zeng, J., Evans, A., Zhang, L.: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Comput. Electron. Agric. 165, 104962 (2019). https://doi.org/10.1016/J.COMPAG.2019.104962

    Article  Google Scholar 

  28. Singh, P., Bose, S.S.: A quantum-clustering optimization method for COVID-19 CT scan image segmentation. Expert Syst. Appl. 185, 115637 (2021). https://doi.org/10.1016/J.ESWA.2021.115637

    Article  Google Scholar 

  29. Wolfgang, M., Peter, A., Wahl, P., Markl, D., Zeitler, J.A., Khinast, J.G.: At-line validation of optical coherence tomography as in-line/at-line coating thickness measurement method. Int. J. Pharm. 572, 118766 (2019). https://doi.org/10.1016/J.IJPHARM.2019.118766

    Article  Google Scholar 

  30. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

    Google Scholar 

  31. Maronna, R., Aggarwal, C.C., Reddy, C.K. (eds.): Data clustering: algorithms and applications. In: Stat. Pap. (2016). https://doi.org/10.1007/s00362-015-0661-7

  32. Muscat, J.: Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras. Springer, Berlin (2014)

    MATH  Google Scholar 

  33. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 3 (1945). https://doi.org/10.2307/1932409

    Article  Google Scholar 

  34. Pedregosa, F., Weiss, R., Brucher, M.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  36. Wang, Y., Gu, Y., Shun, Y.: Theoretically-Efficient and Practical Parallel DBSCAN (2020). https://doi.org/10.1145/3318464.3380582

  37. Rowe, R.C.: Surface roughness measurements on both uncoated and film-coated tablets. J. Pharm. Pharmacol. (1979). https://doi.org/10.1111/j.2042-7158.1979.tb13557.x

    Article  Google Scholar 

Download references

Acknowledgements

The COMET Center Research Center Pharmaceutical Engineering (RCPE) is funded within the framework of COMET—Competence Centers for Excellent Technologies by BMK, BMDW, Land Steiermark and SFG. The COMET program is managed by the FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Fink.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, E., Clarke, P., Spoerk, M. et al. Unsupervised real-time evaluation of optical coherence tomography (OCT) images of solid oral dosage forms. J Real-Time Image Proc 19, 881–892 (2022). https://doi.org/10.1007/s11554-022-01229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01229-9

Keywords

Navigation