J Knee Surg 2023; 36(11): 1150-1156
DOI: 10.1055/s-0042-1749608
Original Article

Rates of Anterior Cruciate Ligament Rerupture in Adolescent Patients with and without Patella Alta

1   Department of Orthopedic Surgery, Wake Forest School of Medicine Ringgold Standard Institution, Bowman Gray Center for Medical Education, Winston-Salem, North Carolina
,
Anirudh K. Gowd
2   Department of Orthopaedic Surgery, Wake Forest School of Medicine Ringgold Standard Institution, Winston-Salem, North Carolina
,
LeeAnne F. Torres
2   Department of Orthopaedic Surgery, Wake Forest School of Medicine Ringgold Standard Institution, Winston-Salem, North Carolina
,
Lisa W. Kaplin
3   Department of Orthopaedic Surgery, Orthopaedic Surgery and Rehabilitation Associates, Rockledge, Pennsylvania
,
Brian R. Waterman
4   Department of Orthopaedics, William Beaumont Army Medical Center, El Paso, Texas
› Author Affiliations

Abstract

The objective of this study was to compare rates of anterior cruciate ligament (ACL) failure among adolescent patients to evaluate patella alta as a high-risk variable. Demographic and surgical data were retrospectively queried for patients ≤18 years of age with primary ACL reconstruction performed at a single academic center between 2011 and 2016 and minimum of 2-year clinical surveillance. Patellar height indices, including Caton–Deschamps index (CDI) and Insall–Salvati index (ISI), were retrospectively calculated from preoperative imaging to assess the presence of patella alta. Failure was defined as (1) ACL graft rerupture, (2) Lachman's grade 2 + , (3) presence of pivot shift, and (4) side-to-side difference of 3 mm on KT-1000 arthrometer. A total of 184 patients (84 females and 100 males) and 192 knees were identified, with an average age of 16.2 ± 1.8 years. Of these, 30 (15.63%) experienced ACL failure. Male sex was the only significant risk factor for rerupture (p = 0.026). The mean CDI was 1.06 ± 0.17 and mean ISI was 1.04 ± 0.15. Of the 49 knees that met criteria for patella alta on radiographic evaluation, rerupture occurred in seven (14.29%). Patella alta was not a significant risk factor for ACL failure among adolescent patients (p = 0.359 and 0.277). Only male sex was associated with increased rates of ACL failure. Age, graft selection technique, fixation construct, and presence of patella alta were not risk factors for reinjury. This study is a therapeutic case series and reflects level of evidence IV.



Publication History

Received: 15 June 2021

Accepted: 26 April 2022

Article published online:
07 July 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Buller LT, Best MJ, Baraga MG, Kaplan LD. Trends in anterior cruciate ligament reconstruction in the United States. Orthop J Sports Med 2014; 3 (01) 2325967114563664
  • 2 Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med 2014; 42 (03) 675-680
  • 3 Milewski MD, Beck NA, Lawrence JT, Ganley TJ. Anterior cruciate ligament reconstruction in the young athlete: a treatment algorithm for the skeletally immature. Clin Sports Med 2011; 30 (04) 801-810
  • 4 Mall NA, Chalmers PN, Moric M. et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 2014; 42 (10) 2363-2370
  • 5 Aichroth PM, Patel DV, Zorrilla P. The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. A prospective review. J Bone Joint Surg Br 2002; 84 (01) 38-41
  • 6 Koizumi H, Kimura M, Kamimura T, Hagiwara K, Takagishi K. The outcomes after anterior cruciate ligament reconstruction in adolescents with open physes. Knee Surg Sports Traumatol Arthrosc 2013; 21 (04) 950-956
  • 7 Magnussen RA, Meschbach NT, Kaeding CC, Wright RW, Spindler KP. ACL graft and contralateral ACL tear risk within ten years following reconstruction: a systematic review. JBJS Rev 2015; 3 (01) 1-8
  • 8 Peterson DC, Ayeni OR. Pediatric anterior cruciate ligament reconstruction outcomes. Curr Rev Musculoskelet Med 2016; 9 (04) 339-347
  • 9 Sanders TL, Pareek A, Hewett TE. et al. Long-term rate of graft failure after ACL reconstruction: a geographic population cohort analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (01) 222-228
  • 10 Allen MM, Pareek A, Krych AJ. et al. Are female soccer players at an increased risk of second anterior cruciate ligament injury compared with their athletic peers?. Am J Sports Med 2016; 44 (10) 2492-2498
  • 11 Souryal TO, Moore HA, Evans JP. Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 1988; 16 (05) 449-454
  • 12 Renstrom P, Ljungqvist A, Arendt E. et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 2008; 42 (06) 394-412
  • 13 Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 1998; 26 (03) 402-408
  • 14 Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases [in French]. Rev Chir Orthop Repar Appar Mot 1982; 68: 317-325
  • 15 Insall J, Salvati E. Patella position in the normal knee joint. Radiology 1971; 101 (01) 101-104
  • 16 Phillips CL, Silver DA, Schranz PJ, Mandalia V. The measurement of patellar height: a review of the methods of imaging. J Bone Joint Surg Br 2010; 92 (08) 1045-1053
  • 17 Akgün AS, Agirman M. Associations between anterior cruciate ligament injuries and patella alta and trochlear dysplasia in adults using magnetic resonance imaging. J Knee Surg 2021; 34 (11) 1220-1226
  • 18 Ntagiopoulos PG, Bonin N, Sonnery-Cottet B, Badet R, Dejour D. The incidence of trochlear dysplasia in anterior cruciate ligament tears. Int Orthop 2014; 38 (06) 1269-1275
  • 19 Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 2016; 44 (07) 1861-1876
  • 20 Kujala UM, Osterman K, Kvist M, Aalto T, Friberg O. Factors predisposing to patellar chondropathy and patellar apicitis in athletes. Int Orthop 1986; 10 (03) 195-200
  • 21 Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res 1972; 88: 67-69
  • 22 Lin CFJ, Wu JJ, Chen TS, Huang TF. Comparison of the Insall-Salvati ratio of the patella in patients with and without an ACL tear. Knee Surg Sports Traumatol Arthrosc 2005; 13 (01) 8-11
  • 23 Schweitzer ME, Mitchell DG, Ehrlich SM. The patellar tendon: thickening, internal signal buckling, and other MR variants. Skeletal Radiol 1993; 22 (06) 411-416
  • 24 Degnan AJ, Maldjian C, Adam RJ, Fu FH, Di Domenica M. Comparison of Insall-Salvati ratios in children with an acute anterior cruciate ligament tear and a matched control population. AJR Am J Roentgenol 2015; 204 (01) 161-166
  • 25 Corry IS, Webb JM, Clingeleffer AJ, Pinczewski LA. Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft. Am J Sports Med 1999; 27 (04) 444-454
  • 26 Noojin FK, Barrett GR, Hartzog CW, Nash CR. Clinical comparison of intraarticular anterior cruciate ligament reconstruction using autogenous semitendinosus and gracilis tendons in men versus women. Am J Sports Med 2000; 28 (06) 783-789
  • 27 Gobbi A, Domzalski M, Pascual J. Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surg Sports Traumatol Arthrosc 2004; 12 (06) 534-539
  • 28 Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA. Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med 2006; 34 (04) 621-629
  • 29 Tuman JM, Diduch DR, Rubino LJ, Baumfeld JA, Nguyen HS, Hart JM. Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 2007; 35 (11) 1945-1949
  • 30 Wojtys EM, Huston LJ, Taylor PD, Bastian SD. Neuromuscular adaptations in isokinetic, isotonic, and agility training programs. Am J Sports Med 1996; 24 (02) 187-192
  • 31 Bourke HE, Salmon LJ, Waller A, Patterson V, Pinczewski LA. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med 2012; 40 (09) 1985-1992
  • 32 Andernord D, Björnsson H, Petzold M. et al. Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 2014; 42 (07) 1574-1582
  • 33 Schlumberger M, Schuster P, Schulz M. et al. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc 2017; 25 (05) 1535-1541
  • 34 Nelson IR, Chen J, Love R, Davis BR, Maletis GB, Funahashi TT. A comparison of revision and rerupture rates of ACL reconstruction between autografts and allografts in the skeletally immature. Knee Surg Sports Traumatol Arthrosc 2016; 24 (03) 773-779
  • 35 Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med 2014; 42 (10) 2311-2318
  • 36 Borchers JR, Pedroza A, Kaeding C. Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med 2009; 37 (12) 2362-2367
  • 37 Krych AJ, Jackson JD, Hoskin TL, Dahm DL. A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (03) 292-298
  • 38 Maletis GB, Inacio MCS, Desmond JL, Funahashi TT. Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J 2013; 95-B (05) 623-628
  • 39 Reinhardt KR, Hetsroni I, Marx RG. Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am 2010; 41 (02) 249-262
  • 40 Verma NN, Dennis MG, Carreira DS, Bojchuk J, Hayden JK, Bach Jr BR. Preliminary clinical results of two techniques for addressing graft tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. J Knee Surg 2005; 18 (03) 183-191
  • 41 Freedman KB, D'Amato MJ, Nedeff DD, Kaz A, Bach Jr BR. Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 2003; 31 (01) 2-11
  • 42 Drogset JO, Straume LG, Bjørkmo I, Myhr G. A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc 2011; 19 (05) 753-759
  • 43 Gifstad T, Drogset JO, Grøntvedt T, Hortemo GS. Femoral fixation of hamstring tendon grafts in ACL reconstructions: the 2-year follow-up results of a prospective randomized controlled study. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 2153-2162
  • 44 Frosch S, Rittstieg A, Balcarek P. et al. Bioabsorbable interference screw versus bioabsorbable cross pins: influence of femoral graft fixation on the clinical outcome after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2012; 20 (11) 2251-2256
  • 45 Persson A, Gifstad T, Lind M. et al. Graft fixation influences revision risk after ACL reconstruction with hamstring tendon autografts. Acta Orthop 2018; 89 (02) 204-210
  • 46 Trojani C, Sbihi A, Djian P. et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 2011; 19 (02) 196-201